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The main therne of this issue is non-self-intersecting paths. Our cover illustration shows a
non-intersecting knight path by Robin Msrson, which covers 454 cells on a 24x24 board, leaing lZ2
cells unused. The heaw lines solve the l6x 16 case in 182 cells.
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Further results by Robin Merson on square boards up to side 3l are tabulated, with some further
examples and theory, on pages 305-310, and you are challenged to try to improve on his results, and (in
the Puzzle Questions) to construct a maximal non-intersecting path, open or closed on the 32x32 board.
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fJltonhl /Aaandanhgs

I've been reading a number of books about numbers and give a few notes on topics unearthed.
The Fascinution of Numbers, by W.J.Reichmann, Methuen 1957 (reprint 1963). This old book is

quite a nice introduction to number theory, very simply explained, readable and yet accurate (though,
considering this is a reprint with corrections, a surprising number of minor misprints).

On page 52 he tells us: "Every prime greater than 3 differs from a multiple of both 4 and 6 by a
difference of I (either added or subtracted). Unfortunately it does not follow that every number so
related to 4 and 6 is necessarily a prime." This cancels my statement onp.296 about the 6n + I result
being absent from books on number theory, though he does not develop the point further.

On page 33 this result is new to me: "Fifth powers [in base ten] have exactly the same end-digits as
have their roots." This is slightly unexpected since squares and fourth powers end in 0, l, 4,5, 6 or 9,
and cubes it any digit. He argues: "This is another way of sayrng that the difference between any two
successive fifth power numbers is always a number harritrg I as its *6 digit." He proves it thus:
(r+1)^5 - n^5 : 5n^4 + l0n^3 + l0nn2 * 5n * | = 5(nn4 + 2n^3 + 2n^2 + n\ + 1. The expression in
brackets is even when n is odd since r^4 + n: n(n^3 + 1) and when n is odd then (n^3 + 1) is even.

The following is a pretty little conjuring trick: The victim is asked to think of any number of any
number of digits. He is &en to add up the digits and to take the result from the original number. He is
then to cross out any one digit (once). He is then to permute the remaining digits in any order and reveal
the resulting number. The conjuror can then name the digit crossed out! This she does by calculating
the 'digital root' of the revealed numbers (by adding the digits, then adding the digits of the result, and
so on) and subtracting it from 9. The trick works since subtracting the sum of the digits from any
number leaves a number that is a multiple of 9, whose digital root is therefore 9.

The magic subtraction square shown below is also from this book. It has the property that if in
each row, column and diagonal we subtract the first number from the second, and the result from the
third, the magic constant 5 results. Thus from a, b, c we calculate c-(b-a): (a*c)-b, which is the
same whichever end of the line of three ue start. Our Puzzle Question 35 asks for an extension of this
idea. The four-page treahe,lrt of congruences is barely adequate, but includes an argument that I have

magic subtraction square odd squares are of the form 8t + I remainder of (mxn) + 9

'magic sigma sqrlare'

Number 9 | The Seurch for the Sigma Code, by Cecil Balmond, Prestel -Verlag 1998. This little
book is provoking but ultimately rather disappointing. It consists largely of a compilation of references
to 'nine' in proverbs and religious literature, with about 30 pages in italic devoted to a story in which
nothing much happens, interspersed with much quasi-mystical musing illustrated with childish art.

The 'sigma code' referred to is simply the procedure of finding what Reichmarm calls the 'digital
root', but which Balmond deirotes by E(n). This of course is the same as the remainder when n is
divided by 9, except that in place of the remainder 0 it takes the value 9. Balmond gives the impression
that he has just thought of this idea himself, but it is antique.

On pages 33-4 when introducing the numbers I to 8 he notes that: o'A curious property of 4 is that
any odd number squared when divided by four, leaves a remainder of one." and: "all prime numbers
when squared and divided by eight leave a remainder of one!". This last is obviously untrue for the
prime number 2. The correct statement should be ttrat all odd numbers squared (not just odd primes)
are of ttre form 8/+1, since: (2n+l)' : 8ln(n+I')l}l + l.
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This result" rvhich goes back at least to Diophantus, can be illustrated visually (as in our diagrams
above) by a square array in which the central counter is isolated and the rest divide into eight equal
triangles (such diagrams do not appear in the book reviewed).

On pages 202-3 is a similar result: "All primes to the sixth power, exc€,pt for number 3, have digits
that sum up to unity!" By this he means that they give remainder I on division by 9. This is easily
proved using the fact (see our Problem 28) that all primes greater than 3 are of the form 6n * 1. Thus,
in the binomial expansion of (6n + 1)6 every term other than the unit contains the factor 6x6 [either in
the form of (6n12 or, in the term of degree l, as (6C5)x 6nl and so is divisible by 9. We can thus state,
more generally, that all primals to the sixth power are of the form 9n+1. The fact that the property
holds for 2 as well is incidental (26 :64: 7x9 + 1).

On pages 174 and 205 appear the 'magic sigma square' (see preceding diagram). This is derived
from the 3x3 magic square by circular permutation, moving n to n*I and 9 to 1, and has the property
that every line of three adds to a multiple of 9, (i.e. 9 or l8). In other words it is a 'mystic square' as
defined in our Problern 15 (see G&PJ 14 and l5).

The author makes much play with the "sigma code values of the multiplication table" (p.90), which
he transforms into a circular 'mandala' (p.122), and a figure of eight mandala (p.134) where the 9's are
all condensed to one point, but does not seem aware that this table (if we substitute 0 for his 9) is
simply the multiplication table for arithmetic modulo 9, of which he has apparently not heard. (The
same table, also without reference to modular arithmetic, appears in Reichmann.)

e I The Story of a Number by Eli Maor, Princeton University Press 1994. This is a history of the
exponential number, e :2.7182818284..., from the introduction of logarithms by John Napier in 1614,
to proof of its 'transcendence' by Charles Hermite in 1873, taking in the development of calculus
[d(e^x)/dx = enyll and the theory of complex functions [e^(r + iy\: e^x(cosy + i siny)] on the way.

Although Napier is commonly credited with the discovery of 'natural logarithms' (to base e), the
Napierian logarithm L of anumberNwas in effect defined byN: m(l - llm) L. the multiplying factor
of m: l0^7 being used to avoid decimal fractions, which were still not in customary use at the time.
If we put Nlm : n and Llm = / then we get n: (l - llm)^(ml), and since (l - llm)nm converges to lle
as m increases, we can agree that'T.{apier's logarithms are virtually logarithms to base l/e."

Intriguingly, this book describes yet another fictional encounter with J. S. Bach, this time in 1740
with the mathematician Johann Bernoulli. Here is an edited extract (the sign /// ndrcates omissions):

BsRNouLu.' /// my interest in music is entirely theoretieal; for example, a v'hile ago I and my son
Daniel did some studies on the theory of the vibrating string. This is a new field of research involving
what we in mathematics call continuum mechanics. /// Bacs: As you lmow, our common musical scale
is based on the latvs of the vibrating string. The intervsls we use in music - the octave, .ftfth, fourth
and so on - are all derivedfrom the harmonics, or overtones, ofa string - those feeble higher tones
that are always present when a string vibrates. The frequencies of these harmonics are integral
multiples of the fundamental (owest) frequency, so theyform the progression I, 2, 3, 4, ... [a figure is
given here showing the notes on a double stave, rising from the C two octaves below middle C, which
is the fourth harmonic, to the C two octaves above middle C which is the l6th harmonicl. Ifte
intervals ofour scale correspond to ratios ofthese numbers: 2: I for the octqve, 3:2 for the fifth, 4:3

for the fourth, and so on. The scale formed from these ratios is called the iust intonation scale.
BsRNoL'LLr.' That perfectly fits my love for orderly sequences of numbers. Bncu: But there is a
problem. A scale constructedfrom these ratios consists of three basic intervals: 9:8, l0:9 and 16:15

lfigurel. The first two are nearly identical, and each is called a whole tone /// .

CDEF
264 297 330 352

G

396

A

44tt

BC'
495 528

l6:15

The scale of C-major. The upper numbers indicate &e frequency of each note (taking 4=440)
in cycles/second; the lower numbers are tlte frequency ratios between successive notes.
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The last ratio is much smaller and is called a semitone. /// Not only are there two dffirent kinds of
whole tones in use, but if we add up two semitones, their sum will not exactly equal either of the
whale tones. /// It's as if I/2 + l/2 were not exactly equal to I, only approximately. Buwtorrrrt: //
You're right. To add two intervals, we must multiply their frequency ratios. Adding two semitones
corresponds to the product (16:15)(16:15) - 256:225 or approximately 1.138, which is slightly
greater than either 9:8 (: 1.125) or l0:9 (- I.III). Btcn: You see what happens. The harpsichord
has a delicqte mechanism that allows each string to vibrate only at a specific fundamental frequency.
This means that if I want to play a piece in D-major instead of C-minor - what is lcnown as
transposition - then thefirst interval (from D to E) will have the ratio ]A:9 instead of the original
9:8. This is still all right, because the ratio I0:9 is still a part ofthe scale; and besides, the average
listener can barely tell the dffirence. But the next interval - which must agaift be a whole tone -can be formed only by going up a semitone from E ta F and then another semitone from F to F-sharp.
/// And the problem is compounded the farther up I go in the new scale. In short, with the present
system oftuning I cannot transpose from one scale to another, unless ofcourse I happen to play one
of those few instruments that have a continuous range of notes, such as the violin or the human voice.
/// But I have found a remedy: I make all whole tones equal to one another. /// But to accomplish this
I had to abandon the just intonation scale in favor of a compromise. In the new arraagement, the
octave consists of twelve eguql semitones. I call it the equal-tempered scale. (footnote: Bach was not
the first to think of such an affangement of notes. /// It was owing to Bach, however, that the
equal-tempered scale became universally known.\ The problem is, I have a hard time convincing my

fellow musicians of its advantages. They cling stubbornly to the old scale. Bpnuoulrr.' /// If there are
twelve equal semitones in the octave, then each semitone must have afrequency ratio of 12..12 : I ///
(footnotc The decimal value of this is about 1.059, compared to 1.067 for the ratio 16:15. This slight
dffirence, though still within the range of audibility, is so small that most listeners ignore lf.) BecH;
/// Is there any way you could demonstrate this visually? Bepr.ront,u.' I think I can. My late brother
Jakob spent much time exploring a curve called the logarithmic spiral. In this cuwe, equal rotations
increase the distance from the pole by equal ratios. l// To transpose a piece from one scale to
another, all you hqve to do is turn the spiral so thqt the first tone ofyour scale falls on the x-axis. The
remaining tones will automatically fall into place.
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The twelve llotes of the equal-tempered scale arranged along a logarithmic spiral.

[Each 30o rotation represents a l2th root of 2 (1.05946) multiplication of the
frequency. Thus 360" gives a doubling.]

T -.- -r1- -{'-.- - L-- ,.-Lengtn ()l 011e tum
of til spiral.
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The equation of the'doubling' spiral can be written very simply as r:2^c, where r is the usual
radial coordinata, c is the angle of rotation measured in cycles, and 2 is the magnification factor per
cycle. In radian measure it takes the form r :2 (0/2n) or 0 : Zn(logrr), whence the name 'logarithmic
spiral' for this type of curve. The angle $ between the radius and a curve is given by tan $ : r(dO/dr).
Sointhiscasetan$:r[2n(I/r\logre]=2nlogre:2ntog"2=9.06472,whence6:83.7047o.The
angle is constant, hence the alternative name 'equiangular spiral'.

In the inset figure the distance CT, cut off on the tangent at C by the y-axis, is equal to the length
of the turn of the spiral between C and C ', the octave above. This length is also, paradoxically, the
limiting 'length' of the inner part of the spiral, from C towards O. (The drawings of this in the book, on
pages 123 and207, are misleadingly out of scale.) CT = OC.sec0 :9.12 OC. That the lengths of the
inner tums of the spiral also approach this value can be seen since the rth 360o inward turn is of leng&
(sec$).OC/(2nn\,andthe sum I/2+ I/4 + 1/8 + ... approaches 1.

Readers unfamiliar with geometrical drawing using a computsr may be surprised to leam that in
the diagram above, the curved lines, which appear reasonably smooth, are in fact e,ntirely made up of
stratght line segments! This phenomenon supports the finitist thesis of Professor Cranium, as expressed
in his article on Pi in G&PJ 13, p.218. His views are also supported by the following book:

What is Mathematics, Really? by Reuben Hersh, Vintage (Random House) 1998 (first published
by Jonathan Cape 1997). The preface claims: "This book is a subversive attack on traditional
philosophies of mathematics." But his thesis that "...mathematics must be understood as a human
activity, a social phenomenon, part of human culture, historically evolved, and intelhgible only in a
social context" hardly seems iconoclastic. He goes on at considerable length against platonism,
formalism, intuitionism, foundationism, neo-fregeanism, and other isms, but in the end, although he
quotes extensively, and in very small print, from every philosopher from Plato onwards with a view on
mathematics, I'm not sure ilrat he presents these philosophies in an unbiased manner.

The following on real numbers from p.175 has some validity: "We use real numbers in physical
&eory out of convenisnce, tradition, and habit. For physical purposes we could start and end with
finite, discrete models. Physical measurements are discrete, and finite in size and accuracy. To compute
with them, we have discretized finitized models physically indistinguishable from the real number
model. The mesh size (increment size) must be small enough, the upper bound (maximum admitted
number) must be big enough, and our computing algorithm must be stable. Real numbers make
calculus convenient. Mathematics is smoother and more pleasant in the garden of real numbers. But
they arent essential for theoretical physics, and they aren't used for real calculations."

Yet, he does not advocate doing away with real numbers, as a true subversive Finitist like
Professor Cranium does, who would argue that continuing to describe the modern finite, uncertain,
quantum universe in terms of old fashioned infinitesimalist continuum concepts is akin to the use
epicycles in ftolemaic astronomy.

This book is rather outside our usual remit but an ulterior motive in mentioning it is the presence
on page 23I of a diagram relating to Mu Torere (see our nert page).

The Journul of Recreational Mathematics. Vol.29, Nr.2, announces the retirement of Joseph S.

Madachy from &e editorship at the end of Volume 30. He has edited the joumal since its inception in
1968 apart from a break in 1976-79. The new general editor is to be Charles Ashbacher (Box 294, 119
Northwood Drive, Hiawatha, Indiana 1A52233, USA) with Colin R. J. Singleton (41 St Quentin Drive,
Sheffield, S17 4PN, England) editing the important Problems and Conjectures departrnent.

A particularly interesting problem posed by Peter Raedshelders (Vo1.24, Nr.1 and Vol.25, Nr.1) is
to tile a rectangle with M 'consecutive rectangles' of sizes lx2, 2x3,... , $tx(M+l). He gave solutions
for up to I rectangles, showing ttrat case 6 is insoluble. Edward D. Onstott (Vo1.28, Nr.4) reported that
the condition that the rectangle so formed also be consecutive results in the Diophantine equation
Nx(N+l) : M(M+1XM+2)13 which has exactly five solutions: N : l, 4, 15, 55, 119 with M :1, 3, 8,
20,34. The case 55x56 has now been solved by Allan William Johnson Jr (Vo1.29, Nr.2). This leaves
the largest rectangle l19x 120 as the only unsolved case - get to work! See Problem Question 46.
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AAU fOR€R
Analysis by George Jelliss

This game with very simple rules but complicated play is the distinctive board-game of the Maoris
of New Zealand. The game is described in R.C.Bell's Board and Table Games, volume 2 (Oxford
University Press 1969), but I first encountered it in &e Steve Nichols magazine Games Monthty
(November 1988, pages 32-33) where the rules, some history and a large diagram of the board were
given but no analysis. The board as shown there is in the form of an eight-pointed star, wi& no
connecting lines round the circumference, and oriented with the radial lines horizontal, vertical and at
45 degrees. However the syrnmetry of the opening position and the fact that moves round the
circumference are permitted meiurs that the diagram as shown below makes the rules clearer.

Rules of Mu Torere

There are two players, each with four pieces

alranged initially as shown. The player of the

black pieces moves first..

A11 moves are of a single piece along a line
of the board to the single vacant cell.

A piece may not move to the centre cell (putahi)

urless it is next to an opposing piece.

The turn to move alteffrates and the objective

is to prevent the opponent moving.

The game is mentioned at the end of the history section in the book What is Msfhematics, Really?
(reviewed on the preceding page) where, on p.231, a complex figure showing 'The flow of the game of
mu torere' is quoted, without much explanation, from another book, Ethnomathematics by Marcia
Ascher (BrookslCole, San Francisco 1991). This shows 92 numbered circles connected by curved and
polygonal lines to form a graph with 180" rotary slmmetry.

This stimulated me to revisit mv earlier notes and complete the analysis The number of
geometrically distinct positions possible (disregarding rotations and reflections) is 46. Since each of
these can have black or white to move we arrive at the total 92 in the above-mentioned diagram. The 46
are made up of 8 with centre vacant, 19 with a black piece in the centre and 19 with white there.

If we also group together positions that are complements of each other, i.e. with black and white
interchanged, we arive at 26 basic positions, which are conveniently lettered A to Z.

#$
BCDEFG

##ffi*$*F$$
IJKLMN

ffiffi*effi$&ffi
P aA^ R S

#&-#&^&"ffi'ffiw
WXYZ+-#,'{ -:i

A

#
H

*&
o

ffi
V

ffi
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The above 27 dragrarrs show all the positions with centre vacant or occupied by black. The
complementary positions we denote by the same letters with * attached to indicate interchange of
colours. Of the 8 positions with centre vacant two, C and C*, are complements of each other" while the
other six, A-F, are self-complementary (A* = A and so on). If rve take each letter as indicating the
position with black to move (so that A is the opening position) then we can denote the same position but
with white to move by the prefix -. We now have a notation for all possible positions. The stalemat€
positions to aim for are -X, X*, -Y, Y*, -2, Z*.

Note that the six positions X, Y, Z and -X*, -Y*, -7* are in fact impossible to reach in play,
since they have no move leading into them. If we move the middle piece in Z,Y,X out to the rim we get
positions A" B, C respectively, but the reversals of these moves are illegal.

All transitions by black
moves are listed here

(the-sareomitted).
To find u'hite move

transitions operate \,t ith
* on all letters bearing

in mind that ** cancels

out and that AB DtrF'G

are unaffected.

(e.g. N* - C, O* and N - K)

A. F{

B-I,J,K
C-L,M
C*-N,O
D-P,Q
E-R,S.T, IJ

F-V
G-W

H- A,Z
I-B
J-B,Y
K.B,Y
L-C
M- C.X
I.{ - C*, O
o - c*, 1r{

P-D
Q-Q,D

H*-I*
I* - F{*, L*
J*-P*
K*-N*
L*-I*
M*( - LI*
N*-K*
o*-s*
F* - J*, S*

Q*-T*

R.T,E
S-E
T-E.R
u-tr
V.F,V
w-c
X. C,M
Y.B,J,K
Z - A,TI, Z

R*< - W*
S,* - O*, P*
T*-Q*
TJ:F - M*, V*
VI - IJ*
w*-R*
x*-0
Y*-0
a,.t nL'' -U

Beginning at A black's only two moves both lead to versions of -H and white's only reply gives I.
Then black's only move gives -B and white now has three choices, leading to I*, J*, K*. At this point,
on his third move, black has his first chance to make an error; moving from It to -H* allows white to
reachZ* and win (or alternatively white can make another error, taking the position back to A). On the
other hand black could win by playing (3) I* to -L* then white must go to C* and black can play (4)
-N (not -O) and white must reply K and black has (5) -Y stalemating white. This analysis indicates
that white must avoid I* on his second move and play J* or K*.

Chart of the moves in Mu Torere.
(1) - (2) - (3) - {4) - (s) (6) - (7) (8) (e)
AHIBI{.H*NZ*

A single underline indicates feedback
to an earlier point in the sequence.
A doublg underline indicates cross-reference
to an earlier occuffence in another line.
A hyphen - refers to an entry
above in the sarne colutul
A stroke / indicates choice of moves
to save a line

B/Y
E R*W{C G

S:{. O* g
N*

K* N*.

L* [XN K
OS

P-
T8 Q* D/QN
u:* M{, cn/x*

V*. F
v*l

VT R E/T

KX B/Y* I

J

K

T* trIK

V
IJ{6 E

HNZ
Lg
g
N C*/O

E/r
B-

CL I
MIJ E-

O{'S* E R W G
s o Nlc*

PDr a a/D-
UMX/C

VF
V

w* R*
LX IX

M* IJI.
Q*_lPn sn/Jn

N*-/O* S*
v*_
IJ

J* Plt D P S-/J BAr

a T E-/R-

See our Problem Question 34 for a little more on Mu Torere.

B-/Y*

A whole further seqrlence
continues frorn the A above
w'hich dualises the r,,r'hole chart,
arriving back at A \\'ith
black to move again
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Meglnetislrrr
by Derick Green (O copfright 1998)

This is a game I have designed based on 'The Colchestsr Gams' which was unearthed in an
archaeological dig at Colchester in 1996 and was exte,nsively reported in the press at the time. The find
was unusual in that the pieces were found apparently in position for a game that had already started.
An account was publishedinVariant Chess issue 23 (Spring 1997).

The rules for Magnetism are as follows: (l) A 12xS board is used, each player has 12 playrng
pieces and one maglet piece. Each player sets up their pieces as in Figure 1.

(2) On a piece of paper each player secretly records the square they wish to place their magnet
piece on: anJwhere in their own half of the board, excep on t}re already occupied back row. The
squares are then revealed and the magnets are placed on the board.

(3) The object of the game is simply for a player to be the first to occupy one of the opponent's
back rank squares. Once a player achieves this the opponent has one move to place a piece on the
'winning' player's back row. If this occurs the game continues until a player has two pieces on the
opponents back row, and so on. However, once a player places all 12 pieces on the opposite back row
&e game ends and that player wins. There is no capturing and only one piece may ever occupy any
square. The final positions of the magnets have no effect on the ending of the game.

(4) All pieces, including magnets, move as the queen in chess, restricted only by the other pieces
and magnets and the edge of the board.

(5) A move consists of two parts, both of which must be made. In the first part the player's magnet
piece is moved (we show in round brackets the square moved to) and in the second one of ilre player's
twelve pieces must be moved either towards or away from that player's magnet piece (we show the
coordinates of the two squares). For example in Figure 2 White's magnet is at c4 and White's piece at
d5 could be pushed to e6, fl or g8 (if these squares are vacant) or White's piece at cl could be pulled
to c2 or c3, and White's piece at fl could be pulled to e2 or d3. A player who at any time is unable to
complete both parts of a move has lost the game.

(6) A magnet's influence may pass through other pieces but not through the opponent's magnet. No
piece or magret however may move through or be pulled or pushed through an occupied square. For
example, in Figure 2, if a Black piece was at f7, White's piece could not be pushed to 98 but would
have to stop at e6.

Example Partial Game: White magnet 94, Black magnet d5. 1. (f5) jl-e4 (e2) a&<4 2. (ta\ ea-ha
(96) e8-fl 3. G3) h4-is G5) j8-h6 4. (h4) i5-j6 (96) ea-fs 5. (i4) j6-js (e6) ff-j1. Each player now has
one piece on the opponent's back row. Player B's magnet is slightly better placed. Note White's move 5
shows it is not necessary for the magret to be adjacent to a piece in order to move it away.

Figure 2
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Knight's Tour htrews(

Non-Intersecting Paths by Leapers
by Robin Merson and George Jelliss

Historical Notes A simple question, or group of questions, that leads to some interesting
convoluted pattems and is difficult to answer with certainty is: What is the longest journey a given
piece can make on a given board without entering any cell twice or crossing its own path? Though it
may not visit all cells of the board, such a path is often called a 'tour' since it never passes through a
cell twice and it covers the maximum area possible under the conditions. The 'length' L of a path is
usually counted by the number of moves. The area of the board covered however is measured by the
number of cells visited C. In a closed tour C : L, but in an open tour C = L*l.

A wazir, {0, l}-mover, can never cross its own path, so the problem reduces to that of finding the
longest path. On a rectangular board mxn the wazir can tour all the cells.

The case of the knight { 1, 2} on the 8x8 board was solved in 1930, with an open path of 35 moves
by T. R. Dawson and with a closed path of 32 moves by the Romanian chess problemist Wolfgang
Pauly (1876-1934) [not to be confused with the Austro-Swiss physicist Wolfgang Pauli (1900-1953)].
These results were reported in I'Echiquier, December 1930, though without a diagram of Pauly's
result; a diagram appears in H. J. R. Murray's unpublished 19421rrlidht's tour manuscript.

T. R.Darvson 1930

Knight 33 moves, open

T.R.Dawson 1930

Knight 35 moves, reentrant

W.Pauly 1930

Knight 32 moves, closed

The knight problem for small rectangular boards was rediscovered by L. D. Yarborough rnJournal
of Recreational Mathematics 1968 (vol.1, nr.3, pp.l40 -I42). Some of his results were improved on in
letters inthe same journal 1969 (vol.Z, nr.3, pp.154-157) by R. E. Ruemmler (7x8 and 5x9 to 9x9),
D. E. Knuth (5x6, 6x6, 7x8, 8x8, confirming the Dawson/Pauly results, and 5x9) and M. Matsuda
(6x6, 6x8, 5x9,7x9 and 9*9). Their best results up to 9x9, by number of moves, are: 3*3, 2;3x4, 4;
3x5, 5; 3x6, 6 closed; 3x7, 8; 3x8, 9, 3x9, l0; ... 4x4,5; 4x5, 7;4x6,9 open, 8 closed; 4x7, ll; 4x8,
13 open, 12 closed; 4x9, 15 ... 5x5, l0 open, 8 closed; 5x6, 14; 5x7, 16;5x8, 19 open, 18 closed;
5x9, 22 open, 20 closed; ... 6x6, 17 open or reentrant; 6x7,21; 6x8,25 open, 22 closed; 6x9,29; ...
7x7,24 open,24 closed;7x8,30 open,29 open s5rmmetric,26 closed;'1x9,35; ...8x8,35 opsn or
reentrant, 32 closed; 8x9,42;... 9x9,47, ...
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7x8: Knight 30 moves, open

Note on terminology: J.Rec.Maths. does not distinguish between 'reentrant' and 'closed', we use
'r@ntrant' to describe an open path whose e,nds are a knight move apart; joining up the ends gives a
closed path but causes at least one intersection.

Diagrams of a few interesting small-board tours follow. The l7-move 6x6 path was found by
Knuth and Matsuda independently and is unique, apart from rotation or reflection, and is reentrant. It
has been quoted many times, e.g. in Martin Gardner's Scientifc American column (April 1969) and his
Mathematical Circus and in K. Fabel et al, Schach und Zaht (1978), without due acknowledgement.
The 7xT open and closed solutions are s),mmetrical. The 7x8 open solution is also unique.

Knuth and Matsuda
1969 

taLsut}n Yarborough 1968 Knuth 1969 Knuth and Ruemmler 1969

ffi
Zebra (2,3 )

W
Giratfe ( 1,4)

Antelope (3,4)

WffiKffi

7x7: Knight 24 moves, closed 7 x7 Knight 24 moves) open
quaters)ryrmetric (90" rot) s.vfirmetrie ( 180o rotalion)

The problem for the highet free leapers, giraffe {1,4} antelope {3,4}and z-ebra {2,3) on the 8x8
board was solved by George Jelliss in Chessics (vol.l, issue 9) 1980. Robin Merson, in a letter dated
16 June 1991, accompanied by computer printed diagrams, confirmed these results and exiended them
to larger boards. One open and one closed path for each of camel, zebra, giraffe and antelope, on
boards of side 8, 9 and l0 are shown in the following diagrams. On the 9x9 board the giraffe can do no
better in a closed tour than it does on the 8x8 board.

Camel ( 1,3; 8x8 9x9 lfJx10

ffiffiffi :

ffi
WNffi

ffiffiffiffi
iri iri i{i i i

r\ /\i f,l>r
lMiltlFr

L,,r,affi
ry.i.N i
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Merson also gave solutions for antelope on 11x 11, on which the unique closed path takes the form
of a tetraskelion similar to those for the 7x7 lcright (1,2) and 9x9 zebra (2,3): an evident progression.
These cases were diagrammed in a brief report on his work inVariant Chess, (vol.l, nr.6, 1991).

The following is a table of Robin Merson's results on these longer leapers. The figures in brackets
give the number of different tours found; thus (l) indicates a unique solution. If we have space we may
diagram some more of these results in a subsequent issue.

8xB 9x9 l0x 10 1lxll
open closed open closed open closed open closed

camel

zebra

giraffe

antelope

17 ( 1) 14 (5)

17 (3) 12 (r2)

ls (2) 12 (1)

e (s) 4 (2)

23 (14) 20 (20+;

25 (1) 24 (r)

le (1) 12 (l)
13 (4) s (3)

2e ( 1) 26 (r)

32 (e) 28 (7)

25 (r 1) 20 (2)

17 (1s) 12 (7) 2s (41 21 (r)

camel: {1,3}, zebra= {2,3\,giraffe = {1,4}, antelope: {3,41
T. R. Dawson Fairy Chess Review August 1944 (problem 6038) gave an 8x8 open tour of 52

moves for the gru (knight + camel), i.e. {1,2} and {1,3} leaper.

The Knight on Larger Square Boards. Robin Merson first became interested in this problern

through some items that appearedrn Games & Puzzles 1n 1972-3, where he published a letter (issue 9)

outlining some results. His later work, reported below, was sent to George Jelliss, for inclusion in a
book on tours: results for open paths dated 9 November 1990 and closed paths 23 April 1991.

The table gives the maximum sizes, in number of cells visited, achieved for open and closed

non-intersecting paths on square boards of various sizes. His values for open paths up to 9x9 agfee

with the work of Yarborough and Co. Improvements may still be possible on some of the larger boards.

side open closed

32
45
5 l0

617
724
835
947

side open closed lside open closed

414

453

498

54 I

588

638

689

74210

1l

tz

61

76

o/)-t

0

4

8

t2

24

32

42

54

70

86

13

t4

l5

16

t7

18

l9

20

2l

22

113

134

158

r81

2r0

237

268

302

337

374

104

l24

148

t7z

200

226

256

288

322

360

23

24

25

26

27

28

29

30

31

32

396

434

476

520

564

612

662

711

768

The simplest arrangements of knights moves that cover an area completely are (a) the close-packed

parallels O) lateral zigzags, (c) diagonal zigzags or (d) combinations ofthese:

When we consider the ways ofjoining up these lines in adjacent pairs, using links that fit closely to
the edges and corners, the diagonal zigzags (c) or the type (d) prove the most economical.

;i:i

/ 1 '/;r-------i--"' -,'/' - i,

r i /i
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Robin Merson draws particular attention to the following cases to which he gives names. It is
possible to interpolate a WV structure in each edge of certrain tours n xr to give a tour on an (n+8)-side
square, though this does not always guarantee that the resulting tour is of maximum lengttr.

;;t::il

----!---____!_,_-

VW edge structure
v

Robin gives the following instructions for determining the length of a tour without counting all
lines: Put (n-2) black crosses (x) along each edge on unvisited squares [i.e. one in each row or column
perpendicular to the edge, except at the endsl. Put a red blob (o) in each remaining unvisited square,
and count the number of such blobs, b, which he calls the 'loss' of the tour. Then the length in the case
of an opentour is L: n2 - 4(n- 2)- b - I: n2 - 4n+ 7 - b.For example inthe llxll tour shown
belown=ll,b=8,L:76.[Ifinsteadofthelength.LwecountthecoverageC,Merson'sformulacan
beputinttreformg:(n-2\'+4-b,trueforopenorclosedtours.TheestimateCx(t-2\2+4isa
slight improvement on the vallue (m-2|(n-2) conjectured by Yarborough for rectangular boards.l

The following diagrams are some example open tours by Robin Merson, including an illustration of
his WV extension method. Note that eight voids (x), one for each extra rank or file, plus four extra
voids (blobs, o) are introduced by each WV formation, one inserted in each side.

10 x 10, open, 61 moves

A tour 1 8 x 18 can be formed b"v" VW extension of this l0 x 10 tour,
but it covers only 237 cells, and 238 is possible

XI X

l\-

{,m
i\s
t/t/o

F
;b

Xi X

11x11, open,76 moves

it::

19x19, open,268 moves formed by VW extension of l l xl l
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Further we show Merson's 13x13 solution, and a 15x15 solution with its extension to 23x23.
These latier are the only qirnmetric solutions that he produced. The next larger case, that of a 16x16
tour of 18 I moves extended to 24x24 tour of 453 moves, is shown on our front cover. He conjectured,
from the table, that a 183 path 16x16 ought to be possible but was not able to find one. The 24-size
was the largest open tour that he actually diagrammed. The figure for 26 shown in the table was
mentioned as an extension &om the 237-move l8x l8 solution, and the figures for 25 ard 27 to 30 are
implied by his graph of 'excess' values shown at the end of this article.

13 x 13, open, 1 13 moves

l5 x l5, open, synunetric, 158 moves

23x23, open, s)&rmetric, 414 moves

;;:lifu iw,ffi
4/frlH
,

{f,\

'm
t:til

ffi
fLffi(L
ffi
fLffi
fh/4
7LFr
7h/rt
7L,fi
7L{rt
fbH+

il
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We conclude for the present with a pair of closed tour examples by Merson, showing the WV
extension method again Note that on two edges the WV-formation is moved in one step to allow the
extra connectlng path to pass round the outside.

l0 x 10, slosed, 54 cells

By VW extension this produces the
18x18 tour shown, u'hich in turn
can be extended to give a 26x26
tour covering 518 cells, horvever.

a tour covering 520 cells is possible.

18x18, closed, 222 cells

Anal]'sis. What firnction remains constant during such WV extensions? The board size increases
from n tD n' : n + 8. In the nxn tour we have C : n2 - 4n + 8 - r. In the open tour case the loss
becomes b' : b + 16 (4 extra blobs in each side) while in the closed tour case it becomes b' : b + 24
(4 extra blobs at top and left, 8 extra at right and bottom). Thus in the open case 2n - b remains
constant (i.e. 2n' - b' : 2n - b), while in the closed case 3n - b is constant. These numbers can be
called the excess (E) of the tour. Writing them as gn - b (g : 2 for open, 3 for closed) we find the
formula: E: C - n2 + (4+g)n - 8, where 4+g equals 6 for open, 7 for closed.

BelowareplotsofEforthemaximasofarfound. lntheopencaseforn>10,C>n2-6n+22.
The plot suggests that the maximum value of E for open tours is 16, or does it increase further? For
closed tours the excess increases to a peak of 22 and, then falls off, and Robin said he would be
surprised if it is greater than 16 for any n greater than 31. To summarise: for 7 < n < 31 maximum
lengthtourshavealengthof atleast n2-7n+24 andforr > 3l havealengthof atleast n2-7n*22.

Plots of excess for closed and open tours

20

-/
'', -/ .

,-'/:'
-1-t:.riil

n4 8 12 16 20 24 28 32

[The above account is simplified slightly from Merson's original version, in which he defined an
'excess' for a closed tour equivalent to E + 8, and a 'strength' for an open tour equivalent to E + 7
(the difference of I resulting from defining it in terms of the length L: C-l').1

l6

T2

I

I

,

I

I

I

,

I

X
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Polycube Constructions
confinued, from notes by Walter Stead

First it is necessary to correct an error in my commentary earlier in this series (page 227) whercl
stated that "The asymmetric cases occur in enantiomorphous pairs". This is not quite correct. It is
necessary to say ttrat "The pieces without reflective symmetry occur in enantiomorphous pairs" (which
may be a tautology). This is because in fact three (pairs) of the 'irreflectible' pieces are 'rotatable'; by
which I mean that they can be superimposed on a copy of themselves by rotation. Namely the following
three pairs: one pair of 4 cubes and two pairs of 5 cubes. Visualising these rotations is not at all easy.

a |F a r q F?rrs &s H(h
Now we can continue the Frans Hansson series of problems, sent to Walter Stead on 24 Jlurlre 1954.
(10A): Arrange the reflectible pieces af I, 2,3, 4 or 5 cubes into a 5x5x4 crowned with a central

3x3x2. (l0B): Arrange the ineflectible 4 and 5-cube pieces rn a 6x6x2 with the 4 corner cubes in one

of the 6x6 layers omiued. The E-pairs being sprnetrically disposed. (This is a type II problem, i.e.
using both pieces of each enantiomorphic pair.)

ffiffimMffiH"" '*mffi
Solutions to the next group of problerns (11) to (15) are not illustrated in the notebooks - so

anyone who has made a set of pieces may like to try them. Number (15) has only 23 cases to consider!!
(11A): All pieces of 1,2,3, 4 and 5 cubes, in 5x8x4 with 8 corner cubes removed. (l lB): The 4 or

S-cube pieces not used in (11A) rn3x7x2 with the corner cubes removed. (These are Type I)
(12): Pack all pieces of I to 5 cubes in 7x9x3, omitting centre cubes in each layer. (Tfpe II).
(13): As for (12) in7x7x4 omitting 8 corner cubes and central cubes intwo layers. (Type II).
(la): All 4- and 5-cube pieces in 5x5x5 with 3x3 added centrally at two opposite faces. (Type I)
(15): All S-cubes and 'flat' 4-cubes can be assembled into a 5-cube shape enlarged 3 times: all

cases solved. (Type I) There are 5 'flat' 4-pieces, 12 'flat' 5-pieces and l1 'solid' (i.e. twodecker)
5-pieces, total2lx5; i.e. the rigtrt number to form 5 cubes 3x3x3.

(16): Assemble 8 of the 9 'unsymmetrical' 5-cube pieces to form the ninth, trvice its linear size.

[The text lists the pieces as the four aslmmetric 'solid' S-pieces (in either of their enantiomorphic
forms) and the five 'flat' S-pieces formed from the asymmetric plane pentominoes; but strictly speaking

these 'flat' pieces ars no longer aslmmetric in three dimensions since they can be reflected in &e plane

through the centres of their cubes. Hence my inverted commas.] One example solution is given:

(17): The 'unsymmetric' flat 5-pieces and symmetric 2decker 5-pieces in 5x4x3. (i.e. 5 flat, 5
solid reflectible and 2 solid rotatable) (T1pe I).

(18): The 'unsymmetric' 5-pieces in 5x3x3. (5 flat,4 solid) (Type I).
(19): The 's5nnmetric' 3-, 4- and S-cube pieces in l0x5x2 (i.e. the rotatable 3-, 4- and S-pieces and

the reflectible 2-decker 5-pieces. (Type I)
(20): The same pieces as for (19) in 5x5x4. (Type I) 

tu be continued
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Worrl and Letter Puzzles
Cryptic Crossword Number l2by Querculus Jigsaw Crossword Number 2by Querculus

#17

ACROSS
l. Make off last month with current amount. (6)
5. Make off after insect or horned creature. (8)
9. Museum worksr to set error right? (S)
10. Rum and tea become better when old. (6)
I l. Concert skill mav produce complaint akin to

athlete's foot or housemaid's knee. (12)
13. Made offr,vith, on foot? (5)
14. Sickenmg North American use

Oxford University seconds. (S)
17. Ghostlike rap Celts may create. (8)
18. Make offr,r,ith least disorder. (5)

The answer to esch clue begins with
the first letter of the clue.

Assert seniority as normal (7)
Bold enough for sscond class parfy (5)
Commend gold owing to one (8)
Deeply fears fourth class books (6)
Equal bird recently departed (7)
Falls apart, sounding like part of P (5)
Given shiny covering the force idled (6)
Hello audibly raised on drugs (4)

Involves heavy or flattenlng sarcasm? (5)
Juxtapose oriental with harmless mouth organ plant (s)

Know how to remember, like grannies (5)
Liliaceous emblem (4)
Mudd;'* r,vaters ly'ing low (5)
Northern trouble fixer (4)
Observer about beauty' (8)

Perhaps 'Who Dared Won' (11)

Qualification lacking in practice (5)
Raised land line (5)
Stay on line to Carlisle (6)

Trembles almost high in trees (6)

IJp and in Rugby. but
dornn in Australia (5)

Variabhe Z direction (8)
Will alter mood to hear but not see trees (4)
X in holy post plays bars of W (l l)

Yucky food of that Thor guy (7)
Zero in apathy, but green-eyed

and \,yrong-headed (7)

(6) Just solve the clues
and fit the solufions info
the grid.

20. Vote for king, rvork late, and find the silver lining. (12)
23. Pulling up to greet ruler. (6)
24. Patronage of gold flavourings. (S)
25. Bury others headless for profit or fun. (S)
26. Dehydratrng the Chinese medicine man? (6)

DOWN
2. Dull but poetic time of endless occurrence. (4)
3. Thoughtless Mao makes authentic substitute for chicken. (9)
4. Survey the site of Late Titicaca. (6)
5. The big-eared variety of Nepal hare in fact! (7, 8)
6. Membrane I get tummy pain from. (8)
7. Louts disturb meditative state. (5)
8. Discriminating detail. (10)
12. Scum in pool disturbed by force. (10)
15. An intervention in the end produces extra enmrty. (9)
16. Professional villain to bring Parliament to a halt. (8)
19. Brought about a deletion from the fourth amendment.
21 . Villainy organised in central America. (5)
22. Make ends meet in sharp point. (a)
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Fur.zle Knswers
25. eiryptarithrns

T.R.Dawson gave full-page solutions to his
tw'o crlptarithms but we only have space for a

brief sketch. The answers: (a) letters representing
the digits 1234567890 spell out SHARP KNIFE.
(b) The letters represent 2348 and spell DEAR.
The calculation is 4+4 : 8, 8x4 - 32,32-4: 28.
(Messrs Marlow and Willcocks reported solving
these, and I hope other readers tried them.)

In (a) the given ratios can be rearranged in the
form of a multiplication calculation: RIA x IR :
SFAH + AIKRO
tve see that R - A+1. We want {xRto end in H,
and testing lxZ, 2x3, etc we find H is 0, 2 or 6.

Trying H:0 with A,R
Similarl,v H-6 with A,R : 2,3 or 7,8 won't work.
This leaves H:2lvith A,R - 3 ,4 or 6,7 or 8,9.

In (b) if the first step is subtraction then R:0
but then a trvo digit number ED is impossible; if
tlre first step is multiplication A can only be 2 or 3

{else R - A or needs two digits), but trying cases

eliminates both; so first step is addition. The
second step cannot be subtraction since R-A -
2A-A - A r,vhich is not ED. Consideration of * or
x shorvs A:4 and R:8, and the rest follows.

It is surprising n'hat can be deduced from so
little information in this sort of problem.

?16. Wire-Framed Eoxes
(a) To bend four equal pieces of r,vire to form

a cubical frame. Horv many ways?
M""* answer was, essentially tlvo, but Tom

Marlow counts three, and I think I prefer his
analysis. though the discrepancy is partly a matter
of definition of u'hat counts as 'different'.

There is a solution with the pieces all in two-
dimensional 'C' shape; the Cs follorv each other
round the cube: there are 6 different orientations.

ffiEF
The second way bends all the pieces in a

three-dimensional zigzag shape, its three segments
in the directions of height, width and depth; these
fit together in pairs in a 'table with two legs at
opposite corners' formation. Mr Marlow notes
that these zigags occur in left and right-handed

|'
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forms, and they can either all be of the same
handedness, or can be two of each tlpe (the same

types fitting together to rnake the 'tlo-legged
table'), so he separates these solutions into tw-o
cases: each is possible in six orientations.

In the diagrams of the three cases the dotted
piece is supposed to be at the back.

(b) This part of the question was arithmetical
rather than geometrical. Answers:

(1) 13 units: (1,6,6) (2.2,9) volume 36.
(2) 14 units: (1,5,8) (2,2,10) volume 40 and

{2,6,6) (3,3,8) volume 72"

(3) 19 units: (2.8,9) (3,4,12) volume 141.
(4) Zl units: anv two pairs from (5)
(5) Zl units: (1,8,12) (2,3, 16) volume 96 and

(2,7 ,LZ) {3,4,14) volume I68 and (3,8,10)
(4,5 ,12) volume 210.

ZY. Ro ffiean Speed!
(a) If I go a given distance at 5 mph and the

same distance at 15 mph then my average speed is
7 .5 mph. (It is irrelevant whether the route is up
or down hill. though this explains the dif;Ference in
speed.) If the distance is d mile then at 5 mph it
takes me dls hour and at 15 mph it takes me dll|
hour. Thus 2d mlles takes me dl5 + dlI5 hour :
4dl|5 hour so r/ miles takes me on average 2dll5
hour, i.e. I5l2 miles per hour.

The rnean of two speeds u and v in the same

units over the same distance is Ll(llu + llv) _
(Zuv)l(u + v) which is knonn as the harmonic
mean, it is not the arithmetic mean.

(b) If I go up-hill at 5 mph then, to give me an
average of 10 mph, I must come dou,nhill in no
time at all, i.e. infinitely fast! In other words, it is
impossible. This may be why cyclists tend to go at
excessive speed down-hill; they are trying to
double their mean speed.

28. The Eixlsld Way
The first pair of primals (i.e. numbers of the

form 6n * 1) in rvhich both members are

composite is (119, l2l) since 119 - 7xI7 and
t2l
these numbers is eas)'to miss.

The product of any tlvo primals is a primal
(i.e. the set of primals is closed rvith respect to
multiplication). If rnre call primals 6n + 1 upper
and primals 6n - I lower then the product of trvo
like primals is all upper primal, but the product of
tr,vo unlike primals is a lorver primal.
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(6h+1X6k+1) : 6(6hk + h + k) + 1

(6h-lx6k-l) : 6(6hk - h - k) + I
(6h+1x6k-l) : 6(6hk + k - h) - I

Or, more generally, a product of primals is upper
or lor,ver according as the number of low.er primal
factors in it is even or odd.

The next case is (I43, 145) where 143 _

l lx 13 and 145 - 5 x29. Since (a-1)(a+1) : il'-L,
when the number 6n is a square (a' : 6'k') then
6n - I is composite. The above case is k:2. The
next case k:3 generates (323, 325) where 323 _
17x 19 and 324 : 182 and 325 - 52x 13.

John Beasley writes: "f suspect that the
reason for the non-citation of 'primals' in the

literature is two-fold: (a) the result in itself is too
elementary to be worthv of cofirment, and (b)
neither the primes of the form 6n + I nor those of
the form 6n - I have anv particularly interesting
properties. Contrast the striking and by no means

obvious result that every prime of the form 4n + I
can be expressed as the sum of two squares."

John further observes: "The only interesting
result that I personalll'knor,v about primals is that
'm is a primal' is precisely the condition for it to
be possible to place m non-attacking queens on an
mxm cylindrical chessboard." (For more on this
see J. D. Beasley, The Mathemstics of Gamest
Oxford. 1989 pages 82-35).

Against his points I would contend that there
are man-y equally elsment&ry, not to say trivial,
results that ate found worthl' of comment in the
literature and that further interesting properties,
such as the one he cites. mav remain to be found.

Jel

?;9. Birthdafes
The question, designed to provoke arguments,

\\'as: If a baby is born on the first leap da"v* of the
next millenniuffi, w'hen rvill its first birthda-v occur
and horv old rvill it then be?

The ans\,ver to the second part of the question

is zero. Babies are only born once and they start
at age zero. They reach age one on the first
anniversary of their birthday. Calling the Nth
anniversary of one's birthdav a 'birthday' is
inaccurate shorthand for 'birth anniversary day'.

The first part of the question is calendrical.
The first leap day of the next millenium is 29
February 2A04. It is true that unlike most end-of
century years, 2000 is also a leap year, since it is
divisible by 400 but it is the last year of the 20th
cenfury, and is not in the next millennium. rvhich
begins on I st January 2001 .

#17

30. Knighf's Tour
The second knight's tour with maximum braid

and central subtour is:

51.5nosheP Ehsls
As the result of a half-ball shot the object ball

should be expected to move forward at 30" to the

line of action of the cue and the cue ball to
rebound at 60o to the cue line.

300

i

i 60"
A

The triangle formed by the centres of the balls
A and B and the point C aimed at on the object
ball is a 30-60-90 triangle, i.e. half an equilateral
triangle, since (a) the line of action is tangent at C
and (b) the lengths of the other two sides are I and
2 radrus units. The cue ball reflects as if from the
tangent plane at the point of contact, making equal

angles with the normal.
John Beasley, recalling his schoolroom

mechanics of over 40 years ago, provided a
dynamical argument, resolving the velocity v in
directions parallel and perpendicular to the plane

of contact, and considering elasticit--r,' of the
material. This led to the same geometry, but I
remain unconvinced about his additional results
on the subsequent velocities of the balls.

As a special case he maintains that "In the
extreme case of zero elasticitv and infinite
friction, the balls coalesce and continue with
velocity vlT in the original direction of motion."
Difficult to play snooker under those conditions!

'l
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32. Itnightly Triangles
The fact that knight moves make the same

angles with each other as the angles in 3:4:5
Pghagorean triangles rvas noted by H.J.R.Murray
on p.3 of his 1942 manuscript about The Knight's
Probl€ffi, in fact he evaluates the acute angles as

36" 52' 11.4" and 53o 7'48.6". On p.18 he has a
diagram of such a triangle formed of 3, .1 and 5

k"ight moves (as shown below), r,r,'hich is
sufficient to prove the point. Since a knight move
has length 

^/s 
(taking the sides of the squares of

tlre board as unit), this triangle has area Y, base x

height : %(,lds)t:ds) - 30 square units. To make
this complete triangle the knight requires a 9x 11

board, somer,vhat larger than its usual domain.

Any other knight lines draun on this board
r,vill be parallel or perpendicular to one of these
three lines, so will not create any new angles. We
can therefore say that all triangles formed of lines
of knight moves are 3:4.5 triangles.

The following is a proof of my more general
result, that if we number the triangles from the
smallest upwards a size k triangle has areakzflz}.
I communicated this result (but rn'ithout a

complete proof) to Prof. D. E. Knuth in a letter of
4 December 1992. in response to his idea of a
'celtic tour', which he defined as a tour having
'no three lines nearlv concurrent'; in other rvords
no size-one triangles. (For an example celtic tour
see p.287 of the last issue.)

A set of close-spaced parallel knight-lines
cuts a knight move crossing it into either 5, 1 or 3
equal parts, depending on the angle (see the
follow'itrg diagram). Thus the distance between the
two points where knight-lines rt different angles
cross another knight-line rvill be a multiple of
sixtieths of a knight move, since the least common
multiple of 3, 4 and 5 is 60.
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Denoting a 60th of a knight move? ./S/eO, by
u, the sides of the size k triangle are 3ku, 4ku, 5ku
and the area (y, base*height) is thus 6k2uz.
Inserting the value for u and a little arithmetic
gives the required kzl 120 .

The diagrams below show all the possible
sizes of knight triangles from k _ I to 24. The
long hea--v_v- lines are those of the most acute angle.

-j i-

The ansrvers to parts (b) and (c) of the
question asked are:

(b) The size I I triangle is the closest to unit
area? since llzll20: LZI|120 : I + lll20.

(c) A triangle of three successive knight
moves, being tpe k - 12, has area 615 _ I + Ll5.
(See the bold cross-line in the lorver left diagram.)

The size number k for the big 3:4:5 triangle
shown in Murray's diagram calculated from
k2ll20 :30, is k : 60, as might be expected.

The number 60 has other resonances with
knight moves. T.R.Darvson's manuscripts in the
BCPS Library include a chart of 'The Unit of the
Nightrider's Tr,vo-Move Domain 60x60' r,r'hich
shows that any square can be reached in one tr,la
or three knight-rider moves.
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Fuz.zle Quesfisns
There are more questions than usual in this

issue since number l8 will contain the index to
complete volume 2. This will not appear until
early in 2000, to give good time for solving, and
for solvers' comments to be included. The future
shape of the journal should also then be clearer.
There are distinct possibilities of getting up to
date with a rveb-site and e-mail.

33. R' eountdormr' euriosify
Cn Tuesday 2L September 1999 in the

4.30pm Channel 4 TV Leffers and Numbers game
'Countdornn' one of the number games required
the contestants to form the answer 155 from any
subset of the six numbers selected. The first three
numbers \,\'ere 25, 6 and 5. Everyone agreed this
rvas very easy and gave the solution (25 x 6) + 5.

This came as a surprise to me' since I had found
the solution as (25 + 6) x 5.

Apart from the trivial case involvlng tr,vo

ones: (N x 1) + I _ (N + 1) x I my question is:

What other selections of numbers A, B. C make
possible {A x B) + C - (A + B) x C" trith
interchange of the tno operations? Since A and B
can be interchanged, we can assume that A > B.

The numbers used in Countdo\l,rn are l, 2, 3,

4,5, 6,7,8, 9, 10 each occurrulg at most twice
and 2.5, 50, 75, 100 r,r.hich can only occur once.

However, more ambitious solvers may like to
consider the problem r,vithout these restrictions.

34. ffiu Tonere
The shortest game endrng in stalemate follorvs

the unique sequence A, -H, I, -B, I*, -H*, Z*
(3 pairs of moves) r,vhere on the last move white
stalemates black. This is a 'superstalemate' in
that all the black pieces are in one group. Our
puzzle is: Under the restriction that a player who
can pla)' a stalemating move must do so {i.e.
'reflex' play). find the unique sequence leading to
black superstalemate of white. Plotting a route
through the chart on p.303 should be sufficient.

35. K Eubtraction Square
In our review of the book b"v Reichmann

mention is made of a 3 x 3 'magic subtraction
square'. The question that arises is: Can a similar
5 x5 construction be made? From a line of values
a, b, c, d, e the successive subtraction rule
produces e-(d-(c-(b-a))) _ (a+c+e) (b+d). so

once again it does not matter from which end of
the line rve lvork.

30. Ron-Xnfersecting Tours
There are some challenges still arising from

Robin Merson's work on non-intersecting Knight's
tours featured in this issue. Can an)' of his results
be improved on? In particular you are challenged
to construct 32x32 examples, open or closed, with
maximum coverage. According to Robin Merson's
formulae the number of cells covered should be at
least 854 (open) or 822 (closed).
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57. Wire-Framed Ocfahedron
Tom Marlow notes that a similar problem to

26(a\ arises r,v-ith the regular octahedron. Given
four pieees of wire, all of the same length, ,vou are
required to bend the pieces and place them
together to form an octahedral frame. Horv many
geometrically distinct rvays? This looks a good bit
more difficult to visualise than the cubical case.

38. The Tethered Goaf
A goat is tethered at the edge of a circular

field. What is the length of the tether if the goat
has access to exactly half the area of the field?

This problem rvas mentioned by my brother
Edrryard Jelliss as causing contro\.ersy among his
eolleagues in the Radar establishment at Abu
Dhabi Airport. The numerical result is not
exciting, but the calculation is interesting.

39. K Dsuble Disseetisn
Euclid, Book I, Proposition 35 says.

Parallelograms on the same base and between
the sxme parallels are equal in arer. This
provides a l,va-y of converting one parallelogram
into another by a two-piece disssction.

Tr,vo successive applications of Euclid I.35
gives a three-piece dissection of a parallelogram
into another that may have all sides and angles
different from ths orisinal.

+

Another tlpe of three-piece dissection of a
parallelogram slides one piece along the line of
the cut and thus prsserves the same angles.

C
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These well known results (e.g. H. Lindgren.
Geometric Dissection,y 1964) provide some hints
for solving a new problem by Chris Tylor:

To eut a square into four parts. three of them
triangles. that can be put together. in tr,vo different
ways- to make differently proportioned rectangles.

In Chris's solution one rectangle has its ratio
of sides slightly less than 1,5 ts l, and the other
slightly more than 2 to 1.

40. Rn Xneongruent Fallaey
I fal'our the notation h - m (read 'h mod m')

for the remainder left w-hen h is dir,.ided by m (i.e.

u'hen m is repeatedly subtracted from h until the
number r left is less than m).

IJsing this, the congruence relation of Gauss,

written h _ k (mod m) means the same as the

equali6'h --' m: k -'m.
It follows from h = k (mod m) that h*n = k*n

(mod m) u'here for the sign t we can substitute
multiplication, addition, subtraction (of smaller
from larger) or raising to a power.

The book by W. J. Reichmann. described on
p.298 contains the follorving demonstration of
congruences. Problem: To prove, rvithout
calculating the full digital representation of the
larger number, that 2^ I I I is divisible by 23 .

Answer: Note that Z 5 - 3 2 and 32 = 9 (mod Z3),

so squaring each side 2^10 : 8l : LZ (mod 23),

and multiplying each side by 2: 2^l l : ?4 = I
(mod 23), and subtracting I from each side 2^ll

1 = 0 (mod 23), the required result.
The followittg argument elaborates on an

example given by Reichmann. Our question is:

Where does ths argument go rvrong? 32 : 12

(mod l0), that is 2xl6 : 2x6 (mod l0), so

cancelling the 2 on each side 16 : 6 (mod 10),
which is true. Similarl-v this can be r+'ritten as 2xB

= 2x3 (mod l0), so again cancelling the factor 2
on each side I = 3 (mod 10), that is 10p * I : 10q
+ 3 for some p and q. But this equates an even

rvith an odd number! Which is impossible, isnt it?

ILL. Knightly 9uadranglss
Draw a quadrilateral of knight's moves r*'hich

encloses a unit area (i.e. equal to the area of a
square of the board).

A more general recreation is to construet
knight's tours shorving triangles and squares of all
possible sizes, alone or in combination. There are
many well known examples.
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4?'. Touching Epheres
There used to be a series 'Notes & Queries'

in The Gusrdisn newspaper, in r,vhich reader's
questions of all sorts. serious or ftivolous, lnrere

invited and ans\,vers. provided by other readers,
r\,-ers published, usually the next r,veek.

In The Guardian of 23 April 1990 William
Turner of Hull asked: "If two perfect spheres
come into contact, how can the area of touch be
calculated?" I sent an answer to this, but never
saw any answer published (though ma,v have
missed the relevant issue).

My anst\,er began: "Perfect spheres do not
exist, except in the fantasy world of infinitssim-
alist mathematicians. where they can touch at one

point, rvhich is of zero area. The area of contact
of real spheres depends on their size, material and
the force rnnith rn'hich thel' are pressed together."

An ans\\€r fcr the real sphere case is invited.
M1, solution, r,l'hich was not altogether serious,
involved some geometry due to Apollonius.

43. Kn Uninferesting Rumbey?
In David Wells's compilation The Penguin

Dictionary aJ" Curious and Interesting Numbers

{ 1987) the first rryhole number that fails to head an
entry is 43. I recentl,v came across a sequsnce in
rvhich it features, so offer it here for his next
edition. Can readers provide other examples?

{Question 47 has another sequence using 43.)
The Mersenne numbers. of the form: Znn - I

{ l. 3, 7, 15, 31, 63, 127, } are well knor,.,m and
thoroughl,v treated in all books on number theory,
particularly those numbers in the series that are
primes (know-n therefore as Mersenne Primes).
Most of the larger primes known are of this tlpe.

But n'hat about numbers of the form 2^n + 1'l

One more, instead of less, than a power of trvo.
The sequence runs {3" 5. 9, 17,33,65, L29.757.
513. 1A25, 2049. 4097, 8193, ) When n is a
power of 2 they are knorm as Fermat numbers,
which have an application to the geometry of
polygon constructions, but u'hat of other powers?

It is natural to split the sequence into two
accordittg to even and odd powsrs. When n - 2k
tlren 2n(,2k\ + I - 4^k + I giving {5, 17, 65, 257,
1025, 4097, ...1 including the Fermat numbers

[except for 2^(2^0) + I _ 3 r,r,hich is usually
counted as a Fermat number, though it is
evidently a special casel.

When n is odd hor,vever there seems to be no
immediate simplification. The sequence is {3, 9,
33, 129, 513, 2049' 8193. ) which appears to
be divisible throughout b"v 3 giving the sequence

{ l, 3, I I , 43, l7l, 683 ,2731, } including 43.
Prove that 2^(,2k-1) + I is divisible by 3 (for

k - 1,2" 3' ...)" and provide a direct calculation
for the quotisnt.

44. ff Dsuble Equaring
Mr T. H. Willcocks. sends the latest of his

square jigsaw problems: To arrange 2l squares of
the following sides into a rectangle in tr,r,a

different wa)'s: 9, 15. 21, 26. 49. 98. 113. 144"

149, 165. 175. 177. 201- 2ll- 226- 275- 395
394. 65 1. 709. 937.

Presented in this form of course the problem
is much easier than finding appropriate sizes of
the 2l squares in the first place!

42
31 39

20
1l

aaJJ

9
l4

2f.JL}24 I t9

To shorv what is intended, here are the
solutions of a similar l3-square problem by Mr
Willcocks that appeared in Fairy Chess Review
February and June issues 195 I (problem 59721.
The solutions were presented there 'Forslth
fashion' as a sequence of numbers. The sqllarss
used are of sizes 3,5, 9, 11, 14, 19, 20,24,31.
33, 36, 39" 42, and each rectangle is 75 by ll2.
For comparison I follorv the convention of
orienting the rectangles to have as large a squars
as possible in the top left corner.
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Diagrams of these solutions appear, though
r.vithout explanation or source, ?s Fig. 2l in
h{adachy's A,{atheynaficn! Recreafions b1'

J.S.Madachy (Dover Publications Inc. 1979).
This is a reprint of Madachy's Mathematics on
Vacation (Charles Scribner's Sons, 1966) rvith
additions and corrections; I do not knor,v if the
diagrams appeared in this earlier version too.

45. K Dguble Tour
At the AGM of the British Chess Variants

Society in May 1999 John Beasley reminded me
of a fiveleaper tour question that I proposed in
Vnriant Chess (vol. 1, nr.6, p .75, 1991).

Non-chessist readers may need reminding that
just as the knight makes moves of length ./S that
have coordinates {I,2} , a five-leaper is a tlpe of
generalised knight that makes moves of length 5

units, with coordinates either {0,5} or {3,4}.
Since the fireleaper has four moves at every

square. it follows that in a closed tour the unused
moves are also two to every square and therefore
form either a tour or a pseudo-tour (i.e. a set of
closed circuits). The question is: is such a double
tour possible?

This question was in fact answered in the
affirmative by Tom Marlow in a letter to me of 17

November 1991 . I thought I had published his
result before, either in tC or G&PJ, but it seems
not. It r,vill no\,v appear in the next issue, r,vith

apologies to Mr Marlorv for the hiatus.

46. ffieta-Eguares
It is well known that summing the successive

odd numbers gives the square numbers. The
numbers obtained by summing the successive
even numbers I call the meta-square numbers:
general form n(n+I), i.e . a product of successive
numbers. The series runs: {2, 6, 12, 20, 30, 12,
56, 72,90, 110, L32, 156, ) Usually \\.e divide
by 2 throughout to give the triangular numbers,
however meta-square numbers have at least two
interesting properties of their own.

The nth meta-square ts nz + n and also (,n+l\z
(n+1), i.e. a square plus or minus the number

squared. The meta-squares are thus distributed in
between the squares in a regular maruler (hence
the name - 

cpfrta' meaning 'between').
The relationship betrveen the squares and the

metasquares however is strangely aslrnmetrical.
Another way of expressing the r,vell knou,n result

#17

that a square number is the sum of tr,vo triangular
numbers is that each square is the arithmetic mean
of tw-a successir,'e meta-square nurnbers. n2

[(n-l)n + n(n+I]112. On the other hand each
metasquare is the geometric mean of two
successive square s'. n(n+l ) : rlln'" (,n+1 )tl "

Meta-squares, under the name of 'consecutive
rectangles' appear in the dissection problem
mentioned in our news item about J Rec. Maths
on p.301. Here is a diagram of A. W. Johnson's
magnificent 55 x56 dissection given there.

I have put in dotted lines bisectittg the even
edges to make the orientation clearer, and give
onlv the length of the shortest side. Thus rectangle
17 is 17 x I 8. As mentioned earlier the I 19 x 120

case remains to be solved.
Meta-squares also turn up in the much

simpler dissection puzzle of cutting a rectangle
into trvo pieces to form a differently proportioned
rectangle by cuts along lines parallel to the sides.

rrl
EItl
1x4 to 2x2

4x9 to 6x6
9x l6 to l2xl2

steps lxZ
2x3 and

3x4

J--------------

The cuts form a 'staircase' with k risers and
k+l treads, or vice versa, so if each step is a*b

Ii4
i

:

i

;

I

I

i3

15

7

l9

5
6 4

t1
16

I I

1n
I \,I

9

1(}rc-

l7
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the rectangles must be ka x (k+l)b and (k+l)a x

kb. To convert a rectangle to a square by this
methcd the ratic a: b rnust be k : (k+l) or vice
versa" In other words the squares must be of side
n(n+ I ) and the rectangles of sides nz x (n+ I )2 in
some unit. This result is mentioned, without proof
in the introduction to Geometric Dissections
(1964) by Harry Lindgren. Each step of the
staircase is a metasquare, n by (n+l).

&Y. Xnter-Sguare Rumbers
Countitrg 0 as a meta-square (actually it is a

square), the meta-square numbers plus one form
the sequence: { 1, 3, 7, 13, 21, 31, 43, 57, }
(there is 43 again). These are numbers of the form
n(n-l)+1-n2-n+1.

Similarly the meta-squares minus one form
the sequence: { l, 5, I 1, 19, 29, 41.55, } These
are numbers of the form n(n+l) - I - nz + n - l.

I call these loner and upper inter-square
numbers respectively. The following propert--v of
intersquare numbers, though without any special
terminology, is mentioned in The Fascination o_f

Nttmbers by W. J. Reichmann revier,ved earlier.
The sum of the n odd numbers commencing

w{th the nth lorver intersquare and ending urith the
nth upper intersquare is the nth cube number n3.

The series of cubes runs: {1, 8, 27, 64, LZ| ...}
and the sums take the form: 13

3*- 7 +9 + 11' 43 - 13 + 15 + L7 + 19. 53 : 2l
+23+25+27 +29 andsoon.

The above results can be generalised. An1,
polver of the form n^x can be built up from n
consecutive odd nurnbers, irrespective of the value
of x. When n is odd the central number in the odd
series for n^x is n^(x-l). For example 5^4 - IZI
+ 123 + 125 + L27 + l2g : 621 and 125: 5^3.
When n is even the central pair of numbers in the
series are n^(x-l) * l. For example 4^4_ 6l +
63 + 65 + 67 :256, r'vhere 63 and 64 are 4^3 *1.
[This is also from Reichmann.]

Our puzzle question is tangential to the above
discussion. As there are eight lower intersquare
numbers less than 64 they offer an opportunity'for
a Figured Knight's Tour. Since they are all odd
the.v will appear on squares of the same colour, so
I suggest a diagonal be tried, but any other
formation r,vili be acceptable.

Construct a (preferabl)' closed) knight's
chessboard tour rryith the squares numbered l- 3.
7. 13. 21. 31.43. 57 in a regular formation.

C
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48. Hztec Tafrasfiehs
'Lattice Dissections' of the type shor,nm in the

first diagram below were first studied by
H. D. Benjamin around 1946-3. A few results by
him and T.R.Datvson were recorded in W. Stead's
notebooks but the1, don't seem to have been
published in print at the time.

This subject tvas recently rediscovered by
Brian Barwell under the felicitous nirme of
'Polysticks' (J. Rec. Maths vol .72, nr.3. 1990).
A poly'stick is formed, analogousl,v to a
polyomino, by attaching unit sticks end to end
either straight or at right-angles, or by bending or
welding together pieces of rvire.

The number of geometricall-v* distinct
polysticks of I ,7,3 and 4 units ars 1,2,5 and 16

respectivelr,*. We show Benjamin's 1948 solution
using the 24 to form a 6x6 lattice square.

If the pieces are per ctly made and fitted
together they form a perfect lattice and become
indistinguishable, so it is necessary to show them
with rounded corners. This also allows their
corners to some together r,vithout crossing. It will
be seen from the diagram that 6 of the tetrasticks
and I tristick are 'r,lelded'.

In connection with the above Prof. D. E.
Knuth has sent a prsprint of a paper of his titled
'Dancing Links' which is about a programming
technique but is illustrated by recreational
questions such as poh.omino and chess-piece
arrangements. He mentions that there is a 'color'
version of this paper available htLV:l /v,rww-ce-

f aculfy. stamf ord. edul*knuth/preVrinfs. html.
Towards the end of this paper he presents the

unsolved problem of packing all 25 one-sided
tetrasticks into the 'Aztec diamond' shape shown
above. I r,r,'as able to fit in all but one of the pieces,
but a complete solution looks impossible to ffio,
though I could be rvrong. If irnpossible" a proof is
required. By 'onesided' polysticks Knuth means
that he adds mirror images of the non-axially
s),mmetric pieces to the set, and requires such
pieces to appear in their two distinct forms.

O-t-t-L-l]
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