The Games and Puzzles Journal
Issue 24, September-December 2002 |
This issue is devoted entirely to some excellent work by Awani Kumar that was sent to us by e-mail on 3rd August 2002.
Where successive tours are very similarly numbered the editor, to assist in recognition, has highlighted in the second tour cells that differ from the numbering in the first tour.
The author is at the following postal address: Awani Kumar, B-4, Forest Colony, Vibhuti Khand, Gomti Nagar, Lucknow - 226010, INDIA.
Back to: GPJ Index Page
Sections on this page: (26) The Raja of Mysore's Tour and Related Tours. (27) Some New 'Almost Perfect' Magic Tours. (28) Two Tours Nearest to 'Perfection'. (29) A Tour by Murray and Related Tours. (30) Enumeration of Magic Tours. End
The very first magic Knight’s Tour on 12x12 board (Fig.1) was constructed by Krishnaraj Wadiar, Raja of Mysore, India, before 1868. The author has observed that it is a rich mine of re-entrant magic tours. Hundreds of 'simple magic tours' (only rows and columns are magic, not diagonals) can be derived from it by modifying and connecting the sectors. Fig.1 can be divided into 9 sectors, each of 4x4 size, as shown in Fig.2.
By modifying sectors E and F, another magic tour (Fig.3) can be obtained. Similarly, Fig.4 and Fig.5 can be obtained by modifying sector H of Fig.3. All these are 4-fold cyclic magic tours, that is, they remain magic when numbered from 37, 73 and 109. Fig.6 is unique in the sense that the sum of the diagonals (=1268) is minimum in it. A host of magic tours, with sum of the diagonals being twice the magic constant, can be constructed. Fig.7 and Fig.8 are just two examples. Fig.9 and Fig.10 show the magic tours with one diagonal (= 872), nearest to the magic constant (= 870).
71 | 74 | 143 | 2 | 103 | 42 | 113 | 32 | 105 | 36 | 111 | 38 |
142 | 1 | 70 | 73 | 114 | 31 | 104 | 41 | 112 | 39 | 108 | 35 |
75 | 72 | 3 | 144 | 43 | 102 | 29 | 116 | 33 | 106 | 37 | 110 |
4 | 141 | 76 | 69 | 30 | 115 | 44 | 101 | 40 | 109 | 34 | 107 |
77 | 68 | 139 | 6 | 99 | 46 | 117 | 28 | 95 | 50 | 123 | 22 |
140 | 5 | 78 | 67 | 118 | 27 | 100 | 45 | 122 | 23 | 94 | 51 |
65 | 80 | 7 | 138 | 47 | 98 | 25 | 120 | 49 | 96 | 21 | 124 |
8 | 137 | 66 | 79 | 26 | 119 | 48 | 97 | 24 | 121 | 52 | 93 |
81 | 64 | 9 | 136 | 85 | 60 | 129 | 16 | 89 | 56 | 125 | 20 |
10 | 135 | 84 | 61 | 132 | 13 | 88 | 57 | 128 | 17 | 92 | 53 |
63 | 82 | 173 | 12 | 59 | 86 | 15 | 130 | 55 | 90 | 19 | 126 |
134 | 11 | 62 | 83 | 14 | 131 | 58 | 87 | 18 | 127 | 54 | 91 |
Fig. 1. D1=608 D2=980
|
71 | 74 | 143 | 2 | 103 | 42 | 113 | 32 | 105 | 36 | 111 | 38 |
142 | 1 | 70 | 73 | 114 | 31 | 104 | 41 | 112 | 39 | 108 | 35 |
75 | 72 | 3 | 144 | 43 | 102 | 29 | 116 | 33 | 106 | 37 | 110 |
4 | 141 | 76 | 69 | 30 | 115 | 44 | 101 | 40 | 109 | 34 | 107 |
77 | 68 | 139 | 6 | 99 | 28 | 117 | 48 | 121 | 50 | 95 | 22 |
140 | 5 | 78 | 67 | 118 | 45 | 100 | 25 | 96 | 23 | 122 | 51 |
65 | 80 | 7 | 138 | 27 | 98 | 47 | 120 | 49 | 124 | 21 | 94 |
8 | 137 | 66 | 79 | 46 | 119 | 26 | 97 | 24 | 93 | 52 | 123 |
81 | 64 | 9 | 136 | 85 | 60 | 129 | 16 | 89 | 56 | 125 | 20 |
10 | 135 | 84 | 61 | 132 | 13 | 88 | 57 | 128 | 17 | 92 | 53 |
63 | 82 | 133 | 12 | 59 | 86 | 15 | 130 | 55 | 90 | 19 | 126 |
134 | 11 | 62 | 83 | 14 | 131 | 58 | 87 | 18 | 127 | 54 | 91 |
Fig. 3. D1=648 D2=1020
|
71 | 74 | 143 | 2 | 103 | 42 | 113 | 32 | 105 | 36 | 111 | 38 |
142 | 1 | 70 | 73 | 114 | 31 | 104 | 41 | 112 | 39 | 108 | 35 |
75 | 72 | 3 | 144 | 43 | 102 | 29 | 116 | 33 | 106 | 37 | 110 |
4 | 141 | 76 | 69 | 30 | 115 | 44 | 101 | 40 | 109 | 34 | 107 |
77 | 68 | 139 | 6 | 99 | 28 | 117 | 48 | 121 | 50 | 95 | 22 |
140 | 5 | 78 | 67 | 118 | 45 | 100 | 25 | 96 | 23 | 122 | 51 |
65 | 80 | 7 | 138 | 27 | 98 | 47 | 120 | 49 | 124 | 21 | 94 |
8 | 137 | 66 | 69 | 46 | 119 | 26 | 97 | 24 | 93 | 52 | 123 |
81 | 64 | 9 | 136 | 85 | 60 | 15 | 130 | 89 | 56 | 125 | 20 |
10 | 135 | 84 | 61 | 14 | 131 | 88 | 57 | 128 | 17 | 92 | 53 |
63 | 82 | 133 | 12 | 59 | 86 | 129 | 16 | 55 | 90 | 19 | 126 |
134 | 11 | 62 | 83 | 132 | 13 | 58 | 87 | 18 | 127 | 54 | 91 |
Fig. 4. D1=648 D2=1020
|
71 | 74 | 143 | 2 | 103 | 42 | 113 | 32 | 105 | 36 | 111 | 38 |
142 | 1 | 70 | 73 | 114 | 31 | 104 | 41 | 112 | 39 | 108 | 35 |
75 | 72 | 3 | 144 | 43 | 102 | 29 | 116 | 33 | 106 | 37 | 110 |
4 | 141 | 76 | 69 | 30 | 115 | 44 | 101 | 40 | 109 | 34 | 107 |
77 | 68 | 139 | 6 | 99 | 28 | 117 | 48 | 121 | 50 | 95 | 22 |
140 | 5 | 78 | 67 | 118 | 45 | 100 | 25 | 96 | 23 | 122 | 51 |
65 | 80 | 7 | 138 | 27 | 98 | 47 | 120 | 49 | 124 | 21 | 94 |
8 | 137 | 66 | 69 | 46 | 119 | 26 | 97 | 24 | 93 | 52 | 123 |
81 | 64 | 9 | 136 | 85 | 60 | 129 | 16 | 89 | 56 | 125 | 20 |
10 | 135 | 84 | 61 | 14 | 131 | 88 | 57 | 128 | 17 | 92 | 53 |
63 | 82 | 133 | 12 | 59 | 86 | 15 | 130 | 55 | 90 | 19 | 126 |
134 | 11 | 62 | 83 | 132 | 13 | 58 | 87 | 18 | 127 | 54 | 91 |
Fig. 5. D1=648 D2=1020
|
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 142 | 75 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 1 | 72 | 143 |
11 | 62 | 133 | 84 | 7 | 78 | 139 | 68 | 141 | 70 | 3 | 74 |
134 | 83 | 12 | 61 | 138 | 67 | 6 | 77 | 4 | 73 | 144 | 71 |
59 | 14 | 85 | 132 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
86 | 131 | 60 | 13 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
15 | 58 | 129 | 88 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 16 | 57 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
55 | 128 | 89 | 20 | 93 | 24 | 49 | 122 | 33 | 40 | 105 | 112 |
90 | 17 | 56 | 125 | 52 | 121 | 96 | 23 | 108 | 111 | 24 | 37 |
127 | 54 | 19 | 92 | 21 | 94 | 123 | 50 | 39 | 36 | 109 | 106 |
18 | 91 | 126 | 53 | 124 | 51 | 22 | 95 | 110 | 107 | 38 | 35 |
Fig. 6. D1=824 D2=444
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 51 | 22 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
57 | 16 | 129 | 88 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
86 | 131 | 58 | 15 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
13 | 60 | 87 | 130 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
132 | 85 | 14 | 59 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
83 | 12 | 61 | 136 | 65 | 6 | 79 | 140 | 69 | 144 | 73 | 2 |
62 | 133 | 84 | 9 | 80 | 139 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 137 | 78 | 7 | 68 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 8 | 67 | 138 | 77 | 4 | 75 | 142 | 71 |
Fig. 7. D1=720 D2=1020
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 51 | 22 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
57 | 16 | 129 | 88 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
86 | 131 | 58 | 15 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
13 | 60 | 87 | 130 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
132 | 85 | 14 | 59 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
83 | 12 | 61 | 136 | 65 | 8 | 77 | 140 | 69 | 144 | 73 | 2 |
62 | 133 | 84 | 9 | 80 | 137 | 68 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 7 | 66 | 139 | 78 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 138 | 79 | 6 | 67 | 4 | 75 | 142 | 71 |
Fig. 8. D1=720 D2=1020
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 16 | 57 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
86 | 131 | 60 | 13 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 133 | 84 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
11 | 62 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig. 9. D1=1058 D2=872
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 72 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 89 | 128 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
90 | 127 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
86 | 131 | 16 | 57 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 87 | 130 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 60 | 13 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 133 | 84 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
11 | 62 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig. 10. D1=936 D2=872
|
T.H. Willcocks, H.J.R. Murray, E. Lange and G.P. Jelliss have also constructed magic knight tours on 12x12 board but a 'perfect magic tour' (with both the diagonals equal to magic constant) is still elusive. Willcocks has given three 'almost perfect magic tours' (with one diagonal equal to magic constant). The author has constructed 11 new 'almost perfect magic tours' shown in Fig.11 to Fig.21. Their reverse tours are also 'almost perfect magic tours.'
83 | 26 | 133 | 48 | 85 | 24 | 129 | 52 | 89 | 20 | 127 | 54 |
134 | 47 | 84 | 25 | 132 | 49 | 88 | 21 | 128 | 53 | 90 | 19 |
27 | 82 | 45 | 136 | 23 | 86 | 51 | 130 | 17 | 92 | 55 | 126 |
46 | 135 | 28 | 81 | 50 | 131 | 22 | 87 | 56 | 125 | 18 | 91 |
29 | 80 | 137 | 44 | 99 | 10 | 119 | 62 | 93 | 16 | 123 | 58 |
42 | 139 | 78 | 31 | 118 | 63 | 98 | 11 | 124 | 57 | 94 | 15 |
79 | 30 | 43 | 138 | 9 | 100 | 61 | 120 | 13 | 96 | 59 | 122 |
140 | 41 | 32 | 77 | 64 | 117 | 12 | 97 | 60 | 121 | 14 | 95 |
33 | 76 | 141 | 40 | 101 | 8 | 65 | 116 | 107 | 2 | 67 | 114 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 66 | 115 | 106 | 3 |
75 | 34 | 39 | 142 | 7 | 102 | 111 | 70 | 5 | 104 | 113 | 68 |
144 | 37 | 74 | 35 | 72 | 109 | 6 | 103 | 112 | 69 | 4 | 105 |
Fig. 11. D1=1016 D2=870
|
83 | 26 | 133 | 48 | 85 | 24 | 129 | 52 | 89 | 20 | 127 | 54 |
134 | 47 | 84 | 25 | 132 | 49 | 88 | 21 | 128 | 53 | 90 | 19 |
27 | 82 | 45 | 136 | 23 | 86 | 51 | 130 | 17 | 92 | 55 | 126 |
46 | 135 | 28 | 81 | 50 | 131 | 22 | 87 | 56 | 125 | 18 | 91 |
79 | 30 | 137 | 44 | 99 | 10 | 119 | 62 | 93 | 16 | 123 | 58 |
138 | 43 | 80 | 29 | 118 | 63 | 98 | 11 | 124 | 57 | 94 | 15 |
31 | 78 | 41 | 140 | 9 | 100 | 61 | 120 | 13 | 96 | 59 | 122 |
42 | 139 | 32 | 77 | 64 | 117 | 12 | 97 | 60 | 121 | 14 | 95 |
33 | 76 | 141 | 40 | 101 | 8 | 65 | 116 | 107 | 2 | 67 | 114 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 66 | 115 | 106 | 3 |
75 | 34 | 39 | 142 | 7 | 102 | 111 | 70 | 5 | 104 | 113 | 68 |
144 | 37 | 74 | 35 | 72 | 109 | 6 | 103 | 112 | 69 | 4 | 105 |
Fig. 12. D1=1016 D2=870
|
81 | 28 | 135 | 46 | 87 | 22 | 129 | 52 | 89 | 20 | 127 | 54 |
136 | 45 | 82 | 27 | 130 | 51 | 88 | 21 | 128 | 53 | 90 | 19 |
29 | 80 | 47 | 134 | 23 | 86 | 57 | 124 | 17 | 92 | 55 | 126 |
44 | 137 | 26 | 83 | 50 | 131 | 16 | 93 | 56 | 125 | 18 | 91 |
79 | 30 | 133 | 48 | 85 | 24 | 123 | 58 | 95 | 14 | 121 | 60 |
138 | 43 | 84 | 25 | 132 | 49 | 94 | 15 | 122 | 59 | 96 | 13 |
31 | 78 | 41 | 140 | 5 | 104 | 67 | 114 | 7 | 102 | 61 | 120 |
42 | 139 | 32 | 77 | 68 | 113 | 6 | 103 | 66 | 115 | 12 | 97 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 101 | 8 | 119 | 62 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 116 | 65 | 98 | 11 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 9 | 100 | 63 | 118 |
144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 | 64 | 117 | 10 | 99 |
Fig. 13. D1=888 D2=870
83 | 26 | 133 | 48 | 85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 |
134 | 47 | 84 | 25 | 132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 |
27 | 82 | 45 | 136 | 13 | 96 | 59 | 122 | 15 | 94 | 53 | 128 |
46 | 135 | 28 | 81 | 60 | 121 | 14 | 95 | 58 | 123 | 20 | 89 |
29 | 80 | 137 | 44 | 97 | 12 | 119 | 62 | 93 | 16 | 127 | 54 |
42 | 139 | 78 | 31 | 120 | 61 | 98 | 11 | 124 | 57 | 90 | 19 |
79 | 30 | 43 | 138 | 9 | 100 | 63 | 118 | 17 | 92 | 55 | 126 |
140 | 41 | 32 | 77 | 64 | 117 | 10 | 99 | 56 | 125 | 18 | 91 |
33 | 76 | 141 | 40 | 101 | 8 | 65 | 116 | 107 | 2 | 67 | 114 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 66 | 115 | 106 | 3 |
75 | 34 | 39 | 142 | 7 | 102 | 111 | 70 | 5 | 104 | 113 | 68 |
144 | 37 | 74 | 35 | 72 | 109 | 6 | 103 | 112 | 69 | 4 | 105 |
Fig. 14. D1=1016 D2=870
|
83 | 26 | 133 | 48 | 85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 |
134 | 47 | 84 | 25 | 132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 |
27 | 82 | 45 | 136 | 13 | 96 | 59 | 122 | 15 | 94 | 53 | 128 |
46 | 135 | 28 | 81 | 60 | 121 | 14 | 95 | 58 | 123 | 20 | 89 |
79 | 30 | 137 | 44 | 97 | 12 | 119 | 62 | 93 | 16 | 127 | 54 |
138 | 43 | 80 | 29 | 120 | 61 | 98 | 11 | 124 | 57 | 90 | 19 |
31 | 78 | 41 | 140 | 9 | 100 | 63 | 118 | 17 | 92 | 55 | 126 |
42 | 139 | 32 | 77 | 64 | 117 | 10 | 99 | 56 | 125 | 18 | 91 |
33 | 76 | 141 | 40 | 101 | 8 | 65 | 116 | 107 | 2 | 67 | 114 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 66 | 115 | 106 | 3 |
75 | 34 | 39 | 142 | 7 | 102 | 111 | 70 | 5 | 104 | 113 | 68 |
144 | 37 | 74 | 35 | 72 | 109 | 6 | 103 | 112 | 69 | 4 | 105 |
Fig. 15. D1=1016 D2=870
|
83 | 26 | 133 | 48 | 85 | 24 | 131 | 50 | 93 | 16 | 123 | 58 |
134 | 47 | 84 | 25 | 132 | 49 | 86 | 23 | 124 | 57 | 94 | 15 |
27 | 82 | 45 | 136 | 21 | 88 | 51 | 130 | 17 | 92 | 59 | 122 |
46 | 135 | 28 | 81 | 52 | 129 | 22 | 87 | 56 | 125 | 14 | 95 |
29 | 80 | 137 | 44 | 89 | 20 | 127 | 54 | 91 | 18 | 121 | 60 |
42 | 139 | 78 | 31 | 128 | 53 | 90 | 19 | 126 | 55 | 96 | 13 |
79 | 30 | 43 | 138 | 5 | 104 | 67 | 114 | 7 | 102 | 61 | 120 |
140 | 41 | 32 | 77 | 68 | 113 | 6 | 103 | 66 | 115 | 12 | 97 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 101 | 8 | 119 | 62 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 116 | 65 | 98 | 11 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 9 | 100 | 63 | 118 |
144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 | 64 | 117 | 10 | 99 |
Fig.16. D1=896 D2=870
|
85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 | 89 | 20 | 127 | 54 |
132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 | 128 | 53 | 90 | 19 |
25 | 84 | 47 | 134 | 27 | 82 | 57 | 124 | 17 | 92 | 55 | 126 |
48 | 133 | 26 | 83 | 46 | 135 | 16 | 93 | 56 | 125 | 18 | 91 |
79 | 30 | 137 | 44 | 81 | 28 | 123 | 58 | 95 | 14 | 121 | 60 |
138 | 43 | 80 | 29 | 136 | 45 | 94 | 15 | 122 | 59 | 96 | 13 |
31 | 78 | 41 | 140 | 5 | 104 | 67 | 114 | 7 | 102 | 61 | 120 |
42 | 139 | 32 | 77 | 68 | 113 | 6 | 103 | 66 | 115 | 12 | 97 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 101 | 8 | 119 | 62 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 116 | 65 | 98 | 11 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 9 | 100 | 63 | 118 |
144 | 37 | 74 | 35 | 62 | 109 | 2 | 107 | 64 | 117 | 10 | 99 |
Fig. 17. D1=888 D2=870
|
85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 | 91 | 18 | 125 | 56 |
132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 | 126 | 55 | 92 | 17 |
25 | 84 | 47 | 134 | 27 | 82 | 53 | 128 | 19 | 90 | 57 | 124 |
48 | 133 | 26 | 83 | 46 | 135 | 20 | 89 | 54 | 127 | 16 | 93 |
79 | 30 | 137 | 44 | 81 | 28 | 119 | 62 | 97 | 12 | 123 | 58 |
138 | 43 | 80 | 29 | 136 | 45 | 98 | 11 | 120 | 61 | 94 | 15 |
31 | 78 | 41 | 140 | 9 | 100 | 63 | 118 | 13 | 96 | 59 | 122 |
42 | 139 | 32 | 77 | 64 | 117 | 10 | 99 | 60 | 121 | 14 | 95 |
33 | 76 | 141 | 40 | 101 | 8 | 65 | 116 | 107 | 2 | 67 | 114 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 66 | 115 | 106 | 3 |
75 | 34 | 39 | 142 | 7 | 102 | 111 | 70 | 5 | 104 | 113 | 68 |
144 | 37 | 74 | 35 | 72 | 109 | 6 | 103 | 112 | 69 | 4 | 105 |
Fig. 18. D1=992 D2=870
|
85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 | 93 | 16 | 123 | 58 |
132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 | 124 | 57 | 94 | 15 |
25 | 84 | 47 | 134 | 27 | 82 | 53 | 128 | 17 | 92 | 59 | 122 |
48 | 133 | 26 | 83 | 46 | 135 | 20 | 89 | 56 | 125 | 14 | 95 |
79 | 30 | 137 | 49 | 81 | 28 | 127 | 54 | 91 | 18 | 121 | 60 |
138 | 43 | 80 | 29 | 136 | 45 | 90 | 19 | 126 | 55 | 96 | 13 |
31 | 78 | 41 | 140 | 5 | 104 | 67 | 114 | 7 | 102 | 61 | 120 |
42 | 139 | 32 | 77 | 68 | 113 | 6 | 103 | 66 | 115 | 12 | 97 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 101 | 8 | 119 | 62 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 116 | 65 | 98 | 11 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 9 | 100 | 63 | 118 |
144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 | 64 | 117 | 10 | 99 |
Fig. 19. D1=888 D2=870
|
87 | 22 | 129 | 52 | 95 | 14 | 121 | 60 | 97 | 12 | 119 | 62 |
130 | 51 | 88 | 21 | 122 | 59 | 96 | 13 | 120 | 61 | 98 | 11 |
23 | 86 | 53 | 128 | 15 | 94 | 57 | 124 | 9 | 100 | 63 | 118 |
50 | 131 | 20 | 89 | 58 | 123 | 16 | 93 | 64 | 117 | 10 | 99 |
85 | 24 | 127 | 54 | 91 | 18 | 125 | 56 | 101 | 8 | 115 | 66 |
132 | 49 | 90 | 19 | 126 | 55 | 92 | 17 | 116 | 65 | 102 | 7 |
25 | 84 | 43 | 138 | 31 | 78 | 41 | 140 | 5 | 104 | 67 | 114 |
48 | 133 | 30 | 79 | 42 | 139 | 32 | 77 | 68 | 113 | 6 | 103 |
83 | 26 | 137 | 44 | 33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 |
134 | 47 | 80 | 29 | 144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 |
27 | 82 | 45 | 136 | 75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 |
46 | 135 | 28 | 81 | 38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 |
Fig. 20. D1=870 D2=844
|
87 | 22 | 129 | 52 | 97 | 12 | 119 | 62 | 99 | 10 | 117 | 64 |
130 | 51 | 88 | 21 | 120 | 61 | 98 | 11 | 118 | 63 | 100 | 9 |
23 | 86 | 53 | 128 | 13 | 96 | 59 | 122 | 15 | 94 | 65 | 116 |
50 | 131 | 20 | 89 | 60 | 121 | 14 | 95 | 58 | 123 | 8 | 101 |
85 | 24 | 127 | 54 | 91 | 18 | 125 | 56 | 93 | 16 | 115 | 66 |
132 | 49 | 90 | 19 | 126 | 55 | 92 | 17 | 124 | 57 | 102 | 7 |
25 | 84 | 43 | 138 | 31 | 18 | 41 | 140 | 5 | 104 | 67 | 114 |
48 | 133 | 30 | 79 | 42 | 139 | 32 | 77 | 68 | 113 | 6 | 103 |
83 | 26 | 137 | 44 | 33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 |
134 | 47 | 80 | 29 | 144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 |
27 | 82 | 43 | 136 | 75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 |
46 | 135 | 28 | 81 | 38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 |
Fig.21. D1=870 D2=836
|
Fig.22 and Fig.23 have the unique property of diagonals differing by 2 and their sum differing by 18 from twice the magic constant. That is, mod (D1- D2) = 2 and mod (D1+ D2 - 1740) = 18. Their reverse tours also have this property. This is the nearest one has approached to 'perfection'.
83 | 26 | 133 | 48 | 85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 |
134 | 47 | 84 | 25 | 132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 |
27 | 82 | 45 | 136 | 7 | 102 | 65 | 116 | 9 | 100 | 53 | 128 |
46 | 135 | 28 | 81 | 66 | 115 | 8 | 101 | 64 | 117 | 20 | 89 |
29 | 80 | 137 | 44 | 103 | 6 | 63 | 118 | 99 | 10 | 127 | 54 |
42 | 139 | 78 | 31 | 114 | 67 | 12 | 97 | 120 | 61 | 90 | 19 |
79 | 30 | 43 | 138 | 5 | 104 | 119 | 62 | 11 | 98 | 55 | 126 |
140 | 41 | 32 | 77 | 68 | 113 | 96 | 13 | 60 | 121 | 18 | 91 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 95 | 14 | 125 | 56 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 122 | 59 | 92 | 17 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 15 | 94 | 57 | 124 |
144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 | 58 | 123 | 16 | 93 |
Fig. 22. D1=862 D2=860
|
83 | 26 | 133 | 48 | 85 | 24 | 131 | 50 | 87 | 22 | 129 | 52 |
134 | 47 | 84 | 25 | 132 | 49 | 86 | 23 | 130 | 51 | 88 | 21 |
27 | 82 | 45 | 136 | 7 | 102 | 65 | 116 | 9 | 100 | 53 | 128 |
46 | 135 | 28 | 81 | 66 | 115 | 8 | 101 | 64 | 117 | 20 | 89 |
79 | 30 | 137 | 44 | 103 | 6 | 63 | 118 | 99 | 10 | 127 | 54 |
138 | 43 | 80 | 29 | 114 | 67 | 12 | 97 | 120 | 61 | 90 | 19 |
31 | 78 | 41 | 140 | 5 | 104 | 119 | 62 | 11 | 98 | 55 | 126 |
42 | 139 | 32 | 77 | 68 | 113 | 96 | 13 | 60 | 121 | 18 | 91 |
33 | 76 | 141 | 40 | 105 | 4 | 69 | 112 | 95 | 14 | 125 | 56 |
38 | 143 | 36 | 73 | 110 | 71 | 108 | 1 | 122 | 59 | 92 | 17 |
75 | 34 | 39 | 142 | 3 | 106 | 111 | 70 | 15 | 94 | 57 | 124 |
144 | 37 | 74 | 35 | 72 | 109 | 2 | 107 | 58 | 123 | 16 | 93 |
Fig. 23. D1=862 D2=860
|
H.J.R. Murray has also given an 'almost perfect magic tour' as shown in Fig.24. Fig.25 can be derived from Murray's tour by modifying its sector F and I. Like Murray's tour, it remains 'almost perfect magic tour' if the tour begins from 73. Fig.26 and Fig.27 can also be obtained. However, Wadiar's tour is more amenable to manipulation than Murray's.
19 | 54 | 95 | 122 | 21 | 52 | 93 | 124 | 23 | 50 | 91 | 126 |
96 | 121 | 20 | 53 | 94 | 123 | 22 | 51 | 92 | 125 | 24 | 49 |
55 | 18 | 131 | 86 | 45 | 28 | 129 | 88 | 47 | 26 | 127 | 90 |
120 | 97 | 44 | 29 | 130 | 87 | 46 | 27 | 128 | 89 | 48 | 25 |
17 | 56 | 85 | 132 | 35 | 38 | 81 | 136 | 71 | 138 | 79 | 2 |
98 | 119 | 30 | 43 | 134 | 83 | 34 | 37 | 80 | 3 | 70 | 139 |
57 | 16 | 133 | 84 | 39 | 36 | 135 | 82 | 137 | 72 | 1 | 78 |
118 | 99 | 42 | 31 | 104 | 113 | 40 | 33 | 4 | 77 | 140 | 69 |
15 | 58 | 103 | 114 | 41 | 32 | 105 | 112 | 73 | 68 | 5 | 144 |
100 | 117 | 12 | 61 | 106 | 109 | 10 | 63 | 8 | 141 | 76 | 67 |
59 | 14 | 115 | 102 | 11 | 62 | 111 | 108 | 65 | 74 | 143 | 6 |
116 | 101 | 60 | 13 | 110 | 107 | 64 | 9 | 142 | 7 | 66 | 75 |
Fig. 24. D1=1018 D2=870
|
19 | 54 | 95 | 122 | 21 | 52 | 93 | 124 | 23 | 50 | 91 | 126 |
96 | 121 | 20 | 53 | 94 | 123 | 22 | 51 | 92 | 125 | 24 | 49 |
55 | 18 | 131 | 86 | 45 | 28 | 129 | 88 | 47 | 26 | 127 | 90 |
120 | 97 | 44 | 29 | 130 | 87 | 46 | 27 | 128 | 89 | 48 | 25 |
17 | 56 | 85 | 132 | 35 | 38 | 81 | 136 | 3 | 138 | 79 | 70 |
98 | 119 | 30 | 43 | 134 | 83 | 34 | 37 | 80 | 71 | 2 | 139 |
57 | 16 | 133 | 84 | 39 | 36 | 135 | 82 | 137 | 4 | 69 | 78 |
118 | 99 | 42 | 31 | 104 | 113 | 40 | 33 | 72 | 77 | 140 | 1 |
15 | 58 | 103 | 114 | 41 | 32 | 105 | 112 | 141 | 68 | 5 | 76 |
100 | 117 | 12 | 61 | 106 | 109 | 10 | 63 | 8 | 73 | 144 | 67 |
59 | 14 | 115 | 102 | 11 | 62 | 111 | 108 | 65 | 142 | 75 | 6 |
116 | 101 | 60 | 13 | 110 | 107 | 64 | 9 | 74 | 7 | 66 | 143 |
Fig. 25. D1=1018 D2=870
|
19 | 54 | 95 | 122 | 21 | 52 | 93 | 124 | 23 | 50 | 91 | 126 |
96 | 121 | 20 | 53 | 94 | 123 | 22 | 51 | 92 | 125 | 24 | 49 |
55 | 18 | 131 | 86 | 45 | 28 | 129 | 88 | 47 | 26 | 127 | 90 |
120 | 97 | 44 | 29 | 130 | 87 | 46 | 27 | 128 | 89 | 48 | 25 |
17 | 56 | 85 | 132 | 35 | 38 | 81 | 136 | 71 | 138 | 79 | 2 |
98 | 119 | 30 | 43 | 134 | 83 | 34 | 37 | 80 | 3 | 70 | 139 |
57 | 16 | 133 | 84 | 39 | 36 | 135 | 82 | 137 | 72 | 1 | 78 |
118 | 99 | 42 | 31 | 104 | 113 | 40 | 33 | 4 | 77 | 140 | 69 |
15 | 58 | 103 | 114 | 41 | 32 | 105 | 112 | 73 | 68 | 5 | 144 |
100 | 117 | 60 | 13 | 106 | 109 | 10 | 63 | 8 | 141 | 76 | 67 |
59 | 14 | 115 | 102 | 11 | 62 | 111 | 108 | 65 | 74 | 143 | 6 |
116 | 101 | 12 | 61 | 110 | 107 | 64 | 9 | 142 | 7 | 66 | 75 |
Fig. 26. D1=1018 D2=918
|
19 | 54 | 95 | 122 | 21 | 52 | 93 | 124 | 23 | 50 | 91 | 126 |
96 | 121 | 20 | 53 | 94 | 123 | 22 | 51 | 92 | 125 | 24 | 49 |
55 | 18 | 131 | 86 | 45 | 28 | 129 | 88 | 47 | 26 | 127 | 90 |
120 | 97 | 44 | 29 | 130 | 87 | 46 | 27 | 128 | 89 | 48 | 25 |
17 | 56 | 85 | 132 | 35 | 38 | 81 | 136 | 3 | 138 | 79 | 70 |
98 | 119 | 30 | 43 | 134 | 83 | 34 | 37 | 80 | 71 | 2 | 139 |
57 | 16 | 133 | 84 | 39 | 36 | 135 | 82 | 137 | 4 | 69 | 78 |
118 | 99 | 42 | 31 | 104 | 113 | 40 | 33 | 72 | 77 | 140 | 1 |
15 | 58 | 103 | 114 | 41 | 32 | 105 | 112 | 141 | 68 | 5 | 76 |
100 | 117 | 60 | 13 | 106 | 109 | 10 | 63 | 8 | 73 | 144 | 67 |
59 | 14 | 115 | 102 | 11 | 62 | 111 | 108 | 65 | 142 | 75 | 6 |
116 | 101 | 12 | 61 | 110 | 107 | 64 | 9 | 74 | 7 | 66 | 143 |
Fig. 27. D1=1018 D2=918
|
Enumeration of magic tours is most difficult and little progress has been made in this direction. Till now, we have enumerated about 1000
'simple magic tours', 32 'almost perfect magic tours' and 'perfect magic tours' are still to be discovered. The author estimates that their total
number will be around 100000, 5000 and 10 respectively. So we have a long way to go!
Sections on this page: (26) The Raja of Mysore's Tour and Related Tours. (27) Some New 'Almost Perfect' Magic Tours. (28) Two Tours Nearest to 'Perfection'. (29) A Tour by Murray and Related Tours. (30) Enumeration of Magic Tours. Top
Back to: GPJ Index Page
Copyright G.P.Jelliss and contributing authors.