The Games and Puzzles Journal
Issue 32, March-April 2004 |
This issue is devoted to further new results by Awani Kumar on 12 by 12 magic knight tours.
This time he concentrates on reentrant tours that are 4-fold cyclic (i.e. remain magic when
renumbered cyclically from the quarter points 37, 73, 109), and also have one diagonal magic.
Back to: GPJ Index Page
Sections on this page:
(66) Introduction.
(67) Even Diagonal Magic.
(68) Even Diagonal Magic with Broken Diagonals.
(69) Odd Diagonal Magic with Broken Diagonals.
(70) Some Open Tours.
End.
Studies in Magic Tours of Knight on 12*12 Board
by Awani Kumar
17, Rana Pratap Marg, Lucknow 226001 INDIA
Tours of Knight have unfathomable mysteries and continue to throw up new results
in spite of voluminous literature produced over centuries by untiring works of
professional and amateur mathematicians. The author has shown that the very first
magic knight's tour on 12*12 board, constructed by Krishnaraj Wadiar, Raja of Mysore,
India, before 1868 is a rich mine of re-entrant magic tours. [See The Games and Puzzles Journal # 24].
Further studies have revealed that not only 'simple magic tours' (only rows and columns magic, not diagonals),
but an ocean of re-entrant cyclic, 'almost perfect magic tours' (rows, columns and one diagonal adding to magic constant) can be constructed from it.
The author has now enumerated over 100 single diagonal closed magic tours. All these
tours are reentrant 4-fold cyclic magic tours, that is, they remain magic when numbered
from the quarter points 37, 73 and 109. All the tours 2 to 28 that follow are of this type.
The 12*12 board can be divided into 9 quads, each of 4*4 size, and the to and fro path
of the knight in all the new tours follows the general plan shown in Fig.1.
[Magic diagonals are coloured in the diagrams below. Yellow for even, Orange for odd.]
Fig.1
|
Fig.2 shows an 'almost perfect magic tour' with its even diagonal adding to magic constant.
Fig.3 to Fig.11 can be obtained by modifying quads not lying on the magic diagonal.
17 | 56 | 91 | 126 | 19 | 54 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 18 | 55 | 124 | 93 | 20 | 53 | 106 | 109 | 36 | 39 |
57 | 16 | 125 | 92 | 51 | 22 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 50 | 23 | 96 | 121 | 52 | 21 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
130 | 87 | 24 | 49 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
86 | 131 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig. 2 OD=686 ED=870
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
130 | 87 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
86 | 131 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.3 OD=682 ED=870
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 91 | 126 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
130 | 87 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
86 | 131 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.4 OD=648 ED=870
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 91 | 126 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
57 | 16 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 14 | 59 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
15 | 58 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.5 OD=648 ED=870
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 89 | 128 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
90 | 127 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
130 | 87 | 58 | 15 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
86 | 131 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.6 OD=650 ED=870
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 89 | 128 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
90 | 127 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.7 OD=610 ED=870
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
57 | 16 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 14 | 59 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
15 | 58 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.8 OD=682 ED=870
|
55 | 18 | 91 | 126 | 53 | 20 | 93 | 124 | 35 | 38 | 107 | 110 |
90 | 127 | 54 | 19 | 92 | 125 | 52 | 21 | 106 | 109 | 36 | 39 |
17 | 56 | 89 | 128 | 23 | 50 | 123 | 94 | 37 | 34 | 111 | 108 |
88 | 129 | 24 | 49 | 122 | 95 | 22 | 51 | 112 | 105 | 40 | 33 |
57 | 16 | 121 | 96 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
130 | 87 | 58 | 15 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 85 | 132 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
86 | 131 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.9 OD=714 ED=870
|
127 | 92 | 19 | 52 | 125 | 94 | 21 | 50 | 35 | 38 | 107 | 110 |
18 | 53 | 126 | 93 | 20 | 51 | 124 | 95 | 106 | 109 | 36 | 39 |
91 | 128 | 55 | 24 | 89 | 122 | 49 | 22 | 37 | 34 | 111 | 108 |
54 | 17 | 90 | 121 | 56 | 23 | 96 | 123 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.10 OD=750 ED=870
|
127 | 92 | 19 | 52 | 125 | 94 | 21 | 50 | 35 | 38 | 107 | 110 |
18 | 53 | 126 | 93 | 20 | 51 | 124 | 95 | 106 | 109 | 36 | 39 |
91 | 128 | 55 | 24 | 89 | 122 | 49 | 22 | 37 | 34 | 111 | 108 |
54 | 17 | 90 | 121 | 56 | 23 | 96 | 123 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 64 | 9 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
11 | 62 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 10 | 63 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.11 OD=1038 ED=870
|
Fig.12 is also an 'almost perfect magic tour' with its even magic diagonal different
from the previous ones. Fig.13 to Fig.15 can be obtained by modifying non magic-diagonal
quads. Similarly, Fig.16 has a different arrangement along its magic diagonals.
Fig.17 to Fig.20 can be obtained by modifying its non magic-diagonal quads.
[Two tours in each set also have an even-numbered broken diagonal which adds to
the magic constant.]
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 16 | 57 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
84 | 133 | 60 | 13 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
11 | 62 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 12 | 61 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.12 OD=1058 ED=870
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
57 | 16 | 87 | 130 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
88 | 129 | 58 | 15 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
84 | 133 | 60 | 13 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
11 | 62 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 12 | 61 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.13 OD=1058 ED=870
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 16 | 57 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
84 | 133 | 64 | 9 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
13 | 60 | 85 | 132 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 10 | 63 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
61 | 12 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.14 OD=770 ED=870
|
19 | 54 | 91 | 126 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 125 | 92 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 56 | 17 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
57 | 16 | 87 | 130 | 25 | 48 | 119 | 100 | 29 | 42 | 113 | 104 |
88 | 129 | 58 | 15 | 120 | 97 | 26 | 45 | 116 | 103 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
84 | 133 | 64 | 9 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
13 | 60 | 85 | 132 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 10 | 63 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
61 | 12 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.15 OD=770 ED=870
|
19 | 54 | 125 | 92 | 51 | 22 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 91 | 126 | 21 | 52 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 16 | 57 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
17 | 56 | 129 | 88 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
130 | 87 | 58 | 15 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
84 | 133 | 60 | 13 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
61 | 12 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
11 | 62 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.16 OD=1014 ED=870
|
19 | 54 | 125 | 92 | 51 | 22 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 89 | 128 | 21 | 52 | 95 | 122 | 37 | 34 | 111 | 108 |
90 | 127 | 56 | 17 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
130 | 87 | 16 | 57 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
84 | 133 | 12 | 61 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
13 | 60 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.17 OD=936 ED=870
|
19 | 54 | 125 | 92 | 51 | 22 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 21 | 52 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 16 | 57 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
17 | 56 | 87 | 130 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
88 | 129 | 58 | 15 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
84 | 133 | 14 | 59 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
61 | 12 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.18 OD=1014 ED=870
|
55 | 18 | 125 | 92 | 51 | 22 | 123 | 94 | 35 | 38 | 107 | 110 |
90 | 127 | 54 | 19 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
17 | 56 | 91 | 126 | 21 | 52 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 20 | 53 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
57 | 16 | 87 | 130 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
88 | 129 | 58 | 15 | 98 | 119 | 28 | 45 | 102 | 115 | 32 | 41 |
59 | 14 | 131 | 86 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
84 | 133 | 12 | 61 | 118 | 99 | 46 | 27 | 116 | 101 | 42 | 31 |
13 | 60 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.19 OD=1046 ED=870
|
19 | 54 | 125 | 92 | 51 | 22 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 50 | 23 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 21 | 52 | 95 | 122 | 37 | 34 | 111 | 108 |
128 | 89 | 16 | 57 | 96 | 121 | 24 | 49 | 112 | 105 | 40 | 33 |
17 | 56 | 87 | 130 | 25 | 48 | 97 | 120 | 29 | 44 | 113 | 104 |
88 | 129 | 58 | 15 | 98 | 119 | 28 | 45 | 116 | 101 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 26 | 117 | 100 | 43 | 30 | 103 | 114 |
84 | 133 | 14 | 59 | 118 | 99 | 46 | 27 | 102 | 115 | 42 | 31 |
61 | 12 | 85 | 132 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
134 | 83 | 62 | 11 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
63 | 10 | 81 | 136 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
82 | 135 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
Fig.20 OD=1014 ED=870
|
Fig.20a
|
Fig.28 is the nearest to perfection so far achieved. In this the odd diagonal is 44 short of the magic constant.
However, its broken odd diagonal, shown in orange, also adds to the magic constant.
[Note this tour has been moved out of sequence, but to avoid confusion the editor decided not to renumber all the tours.]
127 | 54 | 19 | 92 | 21 | 94 | 123 | 50 | 35 | 38 | 107 | 110 |
18 | 91 | 126 | 53 | 124 | 51 | 22 | 95 | 106 | 109 | 36 | 39 |
55 | 128 | 89 | 20 | 93 | 24 | 49 | 122 | 37 | 34 | 111 | 108 |
90 | 17 | 56 | 125 | 52 | 121 | 96 | 23 | 112 | 105 | 40 | 33 |
15 | 58 | 129 | 88 | 25 | 48 | 27 | 44 | 117 | 102 | 113 | 104 |
86 | 131 | 16 | 57 | 120 | 97 | 118 | 101 | 28 | 43 | 32 | 41 |
59 | 14 | 87 | 130 | 47 | 26 | 99 | 116 | 45 | 30 | 103 | 114 |
132 | 85 | 60 | 13 | 98 | 119 | 46 | 29 | 100 | 115 | 42 | 31 |
61 | 12 | 133 | 84 | 65 | 8 | 79 | 140 | 69 | 144 | 73 | 2 |
134 | 83 | 64 | 9 | 80 | 137 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 81 | 136 | 7 | 78 | 139 | 68 | 141 | 72 | 1 | 74 |
82 | 135 | 10 | 63 | 138 | 67 | 6 | 77 | 4 | 75 | 142 | 71 |
Fig.28 OD=826 ED=870
|
Figure 28a
|
It is true that the reverse of an even diagonal magic tour gives an odd diagonal magic tour
but the tour shown in Fig.21 is not related like that to previous tours. It has its odd diagonal magic.
Fig.22 to Fig.27 can be derived from it by modifying non magic-diagonal quads.
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 81 | 8 | 65 | 138 | 77 | 140 | 69 | 144 | 73 | 2 |
84 | 133 | 64 | 137 | 80 | 7 | 68 | 5 | 76 | 3 | 70 | 143 |
11 | 62 | 135 | 82 | 9 | 66 | 139 | 78 | 141 | 72 | 1 | 74 |
134 | 83 | 10 | 63 | 136 | 79 | 6 | 67 | 4 | 75 | 142 | 71 |
Fig.21 OD=870 ED=996
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 83 | 136 | 65 | 8 | 77 | 140 | 69 | 144 | 73 | 2 |
84 | 133 | 62 | 9 | 80 | 137 | 68 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 7 | 66 | 139 | 78 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 138 | 79 | 6 | 67 | 4 | 75 | 142 | 71 |
Fig.22 OD=870 ED=1142
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 83 | 136 | 65 | 6 | 79 | 140 | 69 | 144 | 73 | 2 |
84 | 133 | 62 | 9 | 80 | 139 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 137 | 78 | 7 | 68 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 8 | 67 | 138 | 77 | 4 | 75 | 142 | 71 |
Fig. 23 OD=870 ED=1142
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
61 | 12 | 83 | 136 | 79 | 138 | 67 | 6 | 69 | 144 | 73 | 2 |
84 | 133 | 62 | 9 | 66 | 7 | 78 | 139 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 137 | 80 | 5 | 68 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 8 | 65 | 140 | 77 | 4 | 75 | 142 | 71 |
Fig.24 OD=870 ED=1142
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
83 | 12 | 61 | 136 | 65 | 8 | 77 | 140 | 69 | 144 | 73 | 2 |
62 | 133 | 84 | 9 | 80 | 137 | 68 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 7 | 66 | 139 | 78 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 138 | 79 | 6 | 67 | 4 | 75 | 142 | 71 |
Fig.25 OD=870 ED=1164
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
83 | 12 | 61 | 136 | 79 | 138 | 67 | 6 | 69 | 144 | 73 | 2 |
62 | 133 | 84 | 9 | 66 | 7 | 78 | 139 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 137 | 80 | 5 | 68 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 8 | 65 | 140 | 77 | 4 | 75 | 142 | 71 |
Fig.26 OD=870 ED=1164
|
19 | 54 | 125 | 92 | 21 | 52 | 123 | 94 | 35 | 38 | 107 | 110 |
126 | 91 | 20 | 53 | 124 | 93 | 22 | 51 | 106 | 109 | 36 | 39 |
55 | 18 | 127 | 90 | 49 | 24 | 95 | 122 | 37 | 34 | 111 | 108 |
88 | 129 | 16 | 57 | 96 | 121 | 50 | 23 | 112 | 105 | 40 | 33 |
17 | 56 | 89 | 128 | 119 | 48 | 25 | 100 | 29 | 42 | 113 | 104 |
130 | 87 | 58 | 15 | 26 | 97 | 120 | 45 | 116 | 103 | 32 | 41 |
13 | 60 | 131 | 86 | 47 | 118 | 99 | 28 | 101 | 30 | 43 | 114 |
132 | 85 | 14 | 59 | 98 | 27 | 46 | 117 | 44 | 115 | 102 | 31 |
83 | 12 | 61 | 136 | 65 | 6 | 79 | 140 | 69 | 144 | 73 | 2 |
62 | 133 | 84 | 9 | 80 | 139 | 66 | 5 | 76 | 3 | 70 | 143 |
11 | 82 | 135 | 64 | 137 | 78 | 7 | 68 | 141 | 72 | 1 | 74 |
134 | 63 | 10 | 81 | 8 | 67 | 138 | 77 | 4 | 75 | 142 | 71 |
Fig.27 OD=870 ED=1164
|
Figure 27a
|
Fig.25 and Fig.27 are unique in the sense that two of their broken diagonals are magic. [The editor notes that in the tour in Fig.27 the magic diagonals occur at regular intervals.
Note also that Fig.28 has been moved to the end of section (68).]
Historical note. T. H. Willcocks, G. P. Jelliss and Awani Kumar have previously constructed 'almost perfect magic tours' of open type,
but only H. J. R. Murray (1947) had previously constructed, a re-entrant 4-fold cyclic 'almost perfect magic tour' (although he may not have noticed that one diagonal was magic).
However, his tour is not 'prolific' in producing other such tours. So, such tours, once rare are now dime a dozen. Human ingenuity can do wonders!
T. H. Willcocks has constructed three open, single diagonal magic tours from which the author
has derived over 80 such tours along with four diagonally magic tours. [See The Games and Puzzles Journal # 26].
G.P.Jelliss (2003) has also constructed four single diagonal open magic tours
from which the author has derived five more such tours as shown in Fig.29 to Fig.33.
5 | 64 | 101 | 120 | 3 | 66 | 107 | 114 | 35 | 70 | 111 | 74 |
100 | 121 | 4 | 65 | 106 | 115 | 2 | 67 | 112 | 73 | 34 | 71 |
63 | 6 | 119 | 102 | 61 | 8 | 113 | 108 | 69 | 36 | 75 | 110 |
122 | 99 | 62 | 7 | 116 | 105 | 68 | 1 | 76 | 109 | 72 | 33 |
11 | 58 | 103 | 118 | 9 | 60 | 81 | 140 | 37 | 32 | 77 | 144 |
98 | 123 | 10 | 59 | 104 | 117 | 42 | 27 | 80 | 141 | 38 | 31 |
57 | 12 | 125 | 96 | 43 | 26 | 139 | 82 | 29 | 40 | 143 | 78 |
124 | 97 | 56 | 13 | 138 | 83 | 28 | 41 | 142 | 79 | 30 | 39 |
15 | 54 | 95 | 126 | 25 | 44 | 85 | 136 | 23 | 46 | 87 | 134 |
94 | 127 | 14 | 55 | 84 | 137 | 24 | 45 | 86 | 135 | 22 | 47 |
53 | 16 | 129 | 92 | 51 | 18 | 131 | 90 | 49 | 20 | 133 | 88 |
128 | 93 | 52 | 17 | 130 | 91 | 50 | 19 | 132 | 89 | 48 | 21 |
Fig.29 OD=870 ED=850
|
5 | 64 | 105 | 116 | 3 | 66 | 107 | 114 | 35 | 70 | 111 | 74 |
104 | 117 | 4 | 65 | 106 | 115 | 2 | 67 | 112 | 73 | 34 | 71 |
63 | 6 | 119 | 102 | 61 | 8 | 113 | 108 | 69 | 36 | 75 | 110 |
118 | 103 | 62 | 7 | 120 | 101 | 68 | 1 | 76 | 109 | 72 | 33 |
11 | 58 | 99 | 122 | 9 | 60 | 81 | 140 | 37 | 32 | 77 | 144 |
98 | 123 | 10 | 59 | 100 | 121 | 42 | 27 | 80 | 141 | 38 | 31 |
57 | 12 | 129 | 92 | 43 | 26 | 139 | 82 | 29 | 40 | 143 | 78 |
124 | 97 | 44 | 25 | 130 | 91 | 28 | 41 | 142 | 79 | 30 | 39 |
13 | 56 | 93 | 128 | 23 | 46 | 83 | 138 | 21 | 48 | 85 | 136 |
96 | 125 | 24 | 45 | 90 | 131 | 22 | 47 | 84 | 137 | 20 | 49 |
55 | 14 | 127 | 94 | 53 | 16 | 133 | 88 | 51 | 18 | 135 | 86 |
126 | 95 | 54 | 15 | 132 | 89 | 52 | 17 | 134 | 87 | 50 | 19 |
Fig.30 OD=870 ED=850
|
5 | 64 | 105 | 116 | 3 | 66 | 107 | 114 | 35 | 70 | 111 | 74 |
104 | 117 | 4 | 65 | 106 | 115 | 2 | 67 | 112 | 73 | 34 | 71 |
63 | 6 | 119 | 102 | 61 | 8 | 113 | 108 | 69 | 36 | 75 | 110 |
118 | 103 | 62 | 7 | 120 | 101 | 68 | 1 | 76 | 109 | 72 | 33 |
11 | 58 | 99 | 122 | 9 | 60 | 81 | 140 | 37 | 32 | 77 | 144 |
124 | 97 | 10 | 59 | 100 | 121 | 42 | 27 | 80 | 141 | 38 | 31 |
57 | 12 | 123 | 98 | 43 | 26 | 139 | 82 | 29 | 40 | 143 | 78 |
96 | 125 | 56 | 13 | 138 | 83 | 28 | 41 | 142 | 79 | 30 | 39 |
55 | 14 | 95 | 126 | 25 | 44 | 85 | 136 | 23 | 46 | 87 | 134 |
94 | 127 | 52 | 17 | 84 | 137 | 24 | 45 | 86 | 135 | 22 | 47 |
15 | 54 | 129 | 92 | 51 | 18 | 131 | 90 | 49 | 20 | 133 | 88 |
128 | 93 | 16 | 53 | 130 | 91 | 50 | 19 | 132 | 89 | 48 | 21 |
Fig.31 OD=870 ED=926
|
5 | 64 | 105 | 116 | 3 | 66 | 107 | 114 | 35 | 70 | 111 | 74 |
104 | 117 | 4 | 65 | 106 | 115 | 2 | 67 | 112 | 73 | 34 | 71 |
63 | 6 | 119 | 102 | 61 | 8 | 113 | 108 | 69 | 36 | 75 | 110 |
118 | 103 | 62 | 7 | 120 | 101 | 68 | 1 | 76 | 109 | 72 | 33 |
11 | 58 | 123 | 98 | 9 | 60 | 81 | 140 | 37 | 32 | 77 | 144 |
124 | 97 | 10 | 59 | 100 | 121 | 42 | 27 | 80 | 141 | 38 | 31 |
57 | 12 | 99 | 122 | 43 | 26 | 139 | 82 | 29 | 40 | 143 | 78 |
96 | 125 | 56 | 13 | 138 | 83 | 28 | 41 | 142 | 79 | 30 | 39 |
55 | 14 | 95 | 126 | 25 | 44 | 85 | 136 | 23 | 46 | 87 | 134 |
94 | 127 | 16 | 53 | 84 | 137 | 24 | 45 | 86 | 135 | 22 | 47 |
15 | 54 | 129 | 92 | 51 | 18 | 131 | 90 | 49 | 20 | 133 | 88 |
128 | 93 | 52 | 17 | 130 | 91 | 50 | 19 | 132 | 89 | 48 | 21 |
Fig.32 OD=870 ED=890
|
5 | 64 | 105 | 116 | 3 | 66 | 107 | 114 | 35 | 70 | 111 | 74 |
104 | 117 | 4 | 65 | 106 | 115 | 2 | 67 | 112 | 73 | 34 | 71 |
63 | 6 | 119 | 102 | 61 | 8 | 113 | 108 | 69 | 36 | 75 | 110 |
118 | 103 | 62 | 7 | 120 | 101 | 68 | 1 | 76 | 109 | 72 | 33 |
11 | 58 | 123 | 98 | 9 | 60 | 81 | 140 | 37 | 32 | 77 | 144 |
124 | 97 | 10 | 59 | 100 | 121 | 42 | 27 | 80 | 141 | 38 | 31 |
57 | 12 | 99 | 122 | 43 | 26 | 139 | 82 | 29 | 40 | 143 | 78 |
96 | 125 | 56 | 13 | 138 | 83 | 28 | 41 | 142 | 79 | 30 | 39 |
55 | 14 | 95 | 126 | 25 | 44 | 85 | 136 | 23 | 46 | 87 | 134 |
94 | 127 | 52 | 17 | 84 | 137 | 24 | 45 | 86 | 135 | 22 | 47 |
15 | 54 | 129 | 92 | 51 | 18 | 131 | 90 | 49 | 20 | 133 | 88 |
128 | 93 | 16 | 53 | 130 | 91 | 50 | 19 | 132 | 89 | 48 | 21 |
Fig.33 OD=870 ED=926
|
Conclusion: A re-entrant 'perfect magic tour' (both diagonals magic) has remained elusive.
However, broken diagonals adding to the magic constant have been shown in several of the figures.
The whole world of pan diagonal magic tours has remained unexplored. Readers are requested to look into it.
Using powerful computers and intelligent programming, the international team of
Hugues Mackay, JC Meyrignac, and Guenter Stertenbrink et al has enumerated all
the 280 magic tours on 8*8 board. So the work started by Beverley (1848) has been
finished after 155 years in 2003. With dedicated and sustained effort, let us
enumerate all the 12*12 magic tours within the next 5 years.
Back to: GPJ Index Page END